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ABSTRACT

In situ and radar data from the second field study of the dynamics and chemistry of marine
stratocumulus (DYCOMS-II) have been used to study drizzle in stratocumulus. Our measure-
ments indicate that drizzle is prevalent. During five of seven analyzed flights precipitation was
evident at the surface, and on roughly a third of the flights mean surface rates approached or ex-
ceeded 0.5 mm d−1. Additional analysis of the structure and variability of drizzle indicates that
the macroscopic (flight averaged) mean drizzle rates at cloud base scale withH3/N whereH is
the flight averaged cloud depth andN the flight averaged cloud droplet number concentration. To
a lesser extent flight-to-flight variability in the mean drizzle rate also scales well with differences
in the 11 and 4 micron brightness temperatures, and the cloud top effective radius. The structure
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of precipitating stratocumulus boundary layers is also investigated, and a general picture emerges
of large flight averaged drizzle rates being manifested primarily through the emergence of intense
pockets of precipitation. The characteristics of the drizzle spectrum in precipitating versus non
precipitating regions of a particular cloud layer were mostly distinguished by the number of driz-
zle drops present, rather than a change in size of the median drizzle drop, or the breadth of the
drizzle spectrum.

1



1. Introduction
Among the pantheon of processes involving stratocumulus, drizzle occupies a peculiar place. De-
spite observational evidence that it is commonplace, it is conspicuously absent in most of our
conceptual and theoretical descriptions of stratocumulus.

Already during the late 1970s and early 1980s measurements in stratocumulus (Brost et al.
(1982) and Nicholls (1984); Nicholls and Leighton (1986)) showed that at times the drizzle flux
contributes significantly to the total water budget. Nicholls (1984) for instance showed that the
gravitational settling of drizzle drops was commensurate with the turbulent flux, through the entire
boundary layer, not just inside the cloud. Similar results were derived from an analysis of data
collected during ASTEX (e.g., Duynkerke et al. (1995), Frisch et al. (1995) and Bretherton et al.
(1995)) and FIRE (Austin et al. 1995) and can be inferred from measurements during SOCEX
(Boers et al. (1996) and Boers et al. (1998)) and data from an experiment off the coast of Oregon
(Vali et al. 1998). In this paper, we present evidence from data collected during the Dynamics and
Chemistry of Marine Stratocumulus -II field study (DYCOMS-II) that drizzle may be even more
prevalent than previously thought. In only two of the seven flights was there no evidence of drizzle
at the sea surface and in two of the flights drizzle rates were substantial, making drizzle something
more of a rule than an exception.

Despite the observational record, in the modeling community drizzle is often neglected or
treated marginally (seee.g., the stratocumulus cases simulated by the GCSS working group 1
(Duynkerke et al. 1999)). Of existing drizzle modeling work, most is concerned with either the
formation of drizzle (e.g., Nicholls (1987), Feingold et al. (1996), Austin et al. (1995)) or the
influence of turbulence on the microphysics of stratocumulus clouds (Kogan et al. 1995). Both
types of studies have a distinct microphysical perspective. Cloud macroscopic features and their
relation to drizzle are less often studied. The feedback of drizzle on the cloud dynamics has
been dealt with in some one dimensional modeling studies (e.g., Albrecht (1989), Ackerman et al.
(1993), Pincus and Baker (1994), Chen and Cotton (1987), Wang and Wang (1994)), in which of
course most of the important processes have to be parameterized. Stevens et al. (1998) is one of a
few studies so far to utilize large eddy simulation to study how drizzle interacts with the turbulent
structure of the PBL. By and large all of these studies provide support for the idea that drizzle can
regulate cloudiness in important ways.

But in our theoretical development of the subject, the role of drizzle as trait d’union between
cloud microphysics and cloud dynamics is still somewhat overlooked. Is this warranted? Should
we think of drizzle as being an important process but yet of secondary significance so that neglect-
ing it is justified? Or is drizzle inextricably bound up with the life cycle of stratocumulus as is
suggested ine.g., Paluch and Lenschow (1991)? Influencing the lifespan of stratocumulus would
give drizzle an important role in the climatology of stratocumulus fields and thus indirectly affect
the radiative balance of the Earth as well. Because it is suggested that larger aerosol concentra-
tions negatively influence the amount of precipitation, this would lead to a direct way in which
man modifies the climate of the Earth (e.g., Albrecht (1989) and Pincus and Baker (1994)). To
address these issues simple drizzle parameterizations are being formulated for general circulation
models (e.g., Khairoutdinov and Kogan (2000)). However these parameterizations are generally
being implemented without a clear idea of how drizzle contributes to the existing stratocumulus
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flight 〈R〉
[mm d−1]

RF01 BDL
RF02 0.35± 0.11
RF03 0.05± 0.03
RF04 0.08± 0.06
RF05 BDL
RF07 0.60± 0.18
RF08 0.12± 0.03

Table 1: Average drizzle rates〈R〉 (BDL denotes below detection limit) for each flight at 70 m
height above the sea surface based on radar data. Each value represents roughly five hours of
data. The conversion from radar reflectivity to drizzle rate is done with Z-R relationships derived
from in situ instruments (SPP-100 and 260X) for each individual flight (RF02, RF03, RF04, RF07,
RF08) or a Z-R relationship derived for all night flights (RF01 and RF05). For information on the
specified uncertainty see section 3 a. and 5..

climatology, nor how it interacts with other processes, such as turbulent mixing and entrainment.
For these reasons we believe that a better quantification of the role of drizzle is necessary. Data

collected during DYCOMS-II provide a unique opportunity to contribute to such a quantification.
During DYCOMS-II a downward looking 95-GHz radar (Vali et al. 1998) was mounted on the
NCAR/NSF C130. From this vantage point it was able to collect reflectivity data throughout the
cloud layer, and down close to the sea surface almost continuously during the whole time period
of each flight, thus creating the possibility to get for the first time an almost continuous estimate of
the surface precipitation rate. The outcome of this calculation is presented in Table 1, which shows
the prevalence of drizzle during DYCOMS-II. This, and the ability to evaluate its horizontal and
vertical structure using bothin situ and remotely sensed data allow us to go beyond earlier studies
(e.g., Austin et al. (1995) and Frisch et al. (1995), both of which had similar objectives but relied on
less comprehensive instrumentation). This article is intended to give the reader more background
on and in depth understanding of the numbers in Table 1. In section 2. and 3. we discuss how the
numbers in Table 1 were estimated. In section 4. we examine the structure behind these numbers,
in particular focusing on how drizzle scales with cloud macroscopic features, at what scales drizzle
is found, and the nature of its spatial and temporal variability, both within and among flights. We
conclude with a discussion and a summary.

2. The DYCOMS-II field study
a. General description

DYCOMS-II took place in July 2001, several hundred kilometers to the west-southwest of San
Diego. It consisted of nine flights in stratocumulus topped marine boundary layers. During the
experiment favorable conditions were encountered; relatively uniform, and spatially extensive stra-
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Figure 1: Channel 1 reflectances from GOES-10 for RF01 (upper left panel), RF02 (upper right
panel), RF05 (lower left panel) and RF07 (lower right panel). All pictures are first light images
(14.30 UTC) with the circles denoting the location of the last leg which were more or less coinci-
dence with the time of the snapshot.

tocumulus cloud decks were probed with almost no breaks or clearings along the flight path. In
Figure 1 we present satellite images of four of the nine flights, two flights without drizzle reaching
the surface and two flights with high values of surface drizzle rates,〈R〉 . Besides showing the
uniformity of the cloud layers on the scale of a measurement segment (circles of roughly 60 km
diameter) the Figure also shows that the non-drizzling cases have a more uniform appearance on
the large scale than the more heavily drizzling flights (Stevens et al. 2003b, e.g.,).

One of the initial surprises of DYCOMS-II was the variability in radar derived cloud mi-
crostructure among flights. For instance, regions of vigorous drizzle (10 mm d−1 or more) were
quite common during several flights, on other flights drizzle rarely was seen below cloud base.
Figure 2 encapsulates some of this variability. The differences between the structure of the non-
precipitating cloud in RF01 and its precipitating counterpart observed during RF07 are striking.
(Note the change in scale, where 10 dBz corresponds to roughly an order of magnitude difference
in drizzle rate.) A curtain-like echo pattern is visible during RF07, with radar reflectivities almost
constant with height in places, and drizzle extending to the sea surface almost everywhere. Su-
perimposed are local cells or pockets with significantly enhanced reflectivities, indicative of much
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Figure 2: Radar reflectivity of the clouds looking down from above during RF01 (upper panel,
11:46 - 12:15 UTC) and RF07 (lower panel, 11:06 - 11:36 UTC). Note that the scale range for
both panels is different. The height specified in each panel denotes cloud top height.

higher drizzle rates. In contrast during RF01 radar returns are confined to the cloud layer, with
only a few patches of echos extending lower down. The tendency for the reflectivity to increase
with height in the cloud in this latter case is consistent with most of the radar returns coming from
an adiabatic cloud microstructure, where mean particle sizes increase toward cloud top.

In addition to tantalizing data such as these, several technical issues also make the DYCOMS-II
data appealing for further analysis. The most important being the fact that bothin situand remotely
sensed data are available from which the drizzle rate can be estimated. These different types
of data complement each other. Moreover, redundancy in microphysicalin situ instrumentation
allowed for independent estimates ofe.g., the in situ drizzle rate. Secondly, all but two flights
were nocturnal. Stratocumulus clouds are thought to deepen through the night which is a favorable
condition for drizzle to occur. Further, because the flight patterns were flown in a Lagrangian way,
approximately one single air mass was probed during each flight.

Of the nine research flights flown during DYCOMS-II, we focus on seven. These seven were
selected because they all had a similar flight pattern consisting of circles with a radius of 30 km.
The long flight legs of∼ 30 min enabled sufficient averaging to reduced sampling uncertainty yet
still provided insights into the spatial and temporal variability at each flight level. Usually two of
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the circles were flown consecutively, but in opposite directions. Within the boundary layer, mea-
surements were concentrated at four levels; at cloud top (CT), just above cloud base (CB), just
below cloud base (SC) and near the surface (SF)). In addition to flight segments within the bound-
ary layer, three remote sensing legs (RL) above the boundary layer were flown at the beginning,
middle, and end of each flight. The fact that the flight strategy was almost identical for each flight
facilitated intercomparison among flights. The latter was especially interesting because the flight
dates and targets were specifieda priori, hence the data sampled the clouds within the general
target area in a manner which was not biased by preconceptions of flow patterns or statistics. More
detailed information about the flight plan, available instruments, specific aims of the experiment,
overviews of each flight and preliminary results can be found in Stevens et al. (2003a).

b. Instrumentation and data quality

The bulk of this paper is based on an analysis of measurements from a small subset of the instru-
mentation carried on the NSF/NCAR C130 aircraft: the 95 GHz Wyoming Cloud Radar and three
instruments for estimating the drop size distribution (DSD); one based upon single-particle scatter-
ing and the other two on shadowing of light. These last three instruments had a sample frequency
of 10 Hz.

The SPP-100 (an electronically upgraded version of the Forward Scattering Spectrometer
Probe, SPP stands for Signal Processing Package) measured the cloud DSD (CDSD) between 2
and 47µ m divided into 40 size intervals. We combined the SPP-100 data into 19 unequal-sized
bins in order to minimize sizing ambiguities. During DYCOMS-II several problems were encoun-
tered with the SPP-100. For RF01 and RF02 the data are slightly questionable because it was
determined that the instrument was overestimating droplet sizes by approximately two bin sizes.
For the remainder of the experiment another SPP-100 probe was used. This probe sized droplets
correctly, however, it failed intermittently. This introduced periods of missing data and ‘spikes’
during restarts. We removed the spurious data points and set the data to missing value if the total
number of droplet counts was zero, assuming the SPP-100 had stopped recording data. During
RF05, the SPP-100 failed and no data are available for this flight. In the case of RF03 and there-
after measurements of cloud droplets were also available from a Fast-FSSP (Brenguier et al. 1998).
Intercomparison of the values of the total droplet number from the SPP-100 and FFSSP for the four
flights for which this was possible show that the values of the FFSSP are within 20% of the values
of the SPP-100, with the SPP-100 measuring higher total droplet concentrations for all flights.

As is generally known, the liquid water amountql derived from the SPP-100 is quite sensitive
to the interpretation of calibration data. In the case of DYCOMS-II we found an average spread
of 0.1 g m−3 by comparing left- and right-handed Riemann sums (as means of estimating the
third momentql). Estimates ofql using centered Riemann sums tended to underestimateql when
compared to values as measured by bulk instruments like the PVM-100A (Gerber 1994) and the
PMS-King probe. Compared to the PVM-100A theql values were 22% lower on average and
compared to the PMS-King-probe 12% lower. However, in at least half of the cases the PVM-100A
and King probe measurements were less than what would be implied by right-handed Riemann
sums. Because the difference between the SPP-100 and the King and PVM-100A probes was on
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the order of the difference between the third moment of the distribution as calculated by right- and
left-handed Riemann sums, we simply based our analysis on the center point of a bin and accepted
the error implied by our inability to determine the size of a particle within a bin.

To determine the sizes of drizzle drops, one- and two-dimensional optical array probes were
used. The one-dimensional Particle Measuring Systems 260X (260X) has a theoretical range in
droplet diameter from 10 to 640µm divided over 63 bins with an equal spacing of 10µm; however,
probe limitations combined with an aircraft speed of 100 ms−1 leads to a lower size limit of 40µm
in practice. Outside of a few periods in which the 260X was non-responsive, the probe functioned
well during all flights. In particular, comparison (discussed below) with the two-dimensional op-
tical array probe shows no discernible effect of the noise found to corrupt previous analyses (e.g.,
Lasher-Trapp et al. (2002)). The two-dimensional optical array probe used for drizzle drops (2DC)
detects particles with a diameter from 25µm up to 800µm distributed over 31 bins. The 2DC
functioned properly with some exceptions; of these periods the whole of RF01 is the most note-
worthy. In processing the 2DC data only particles which did not occlude either end diode were
counted, this limits the size range of the probe but introduces fewer ambiguities.

The redundancy in instrumentation for the drizzle drops gives us the opportunity to compare
the two. Plotting the first moment of the drizzle DSD (DDSD), as measured by both instruments,
in one plot gives a first indication that in general the agreement between the two is quite good over
a large part of the instrument’s range. However, a more useful comparison is made when the fourth
moment† is used as a proxy for the rainrate. Calculation based on 120s averages of the correlation
and regression coefficients between 100 and 500µm show that for flights RF02, RF03 (except the
SF legs), RF07 and RF08 the correlation is high with values above 0.95. Together with best fit
regression coefficients between 0.90 and 1.10 this indicates a good agreement between the 260X
and the 2DC. For the SF legs of RF03 and flights RF04 and RF05 the agreement is poorer, with
higher concentrations for the 260X than the 2D-C for the smaller drizzle drops.

Reflectivity data were obtained with the 95 GHz Wyoming Cloud Radar (Vali et al. 1998).
The radar was operated with a dual antenna configuration but in this paper only data from the
downward looking antenna is used. The analyzed reflectivity data had a vertical spatial resolution
of 15 m (and sometimes 30 m) and a temporal resolution of one second. The radar was flown on
every flight and almost continuous coverage exists with the exception of the SF legs which were
too close to the surface to yield useful radar data. No attenuation corrections are applied to the
data because the combination of shallow clouds with small liquid water contents yields attenuation
values smaller than the 2dBz calibration accuracy. The noise level of the radar displayed little
variation during DYCOMS-II so the data for all flights have been thresholded to exceed the noise
level by one standard deviation based on an overall average of the recorded noise signal.

To compare the radar measurement of reflectivityZradar with the integrated reflectivity esti-
mated from thein situ probes (Zin situ ), Zin situ has been estimated by integrating a lognormal
distribution function fitted to 120s averages of the data (as will be explained in section 3.) and
Zradar is also averaged over 120s. As Figure 3 shows, the correspondence between the two esti-
mates is fairly good. Exact agreement is not to be expected because the sampling volumes of the

†Drops in the drizzle drop range have fall speeds proportional to their diameter, (e.g., Rogers and Yau 1989) thus
their mass flux is proportional to the fourth moment of the diameter
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Figure 3: Comparison of reflectivityZin situ andZradar with respect to RF02 for CT (closed cir-
cles), CB (open circles) and SC (asterisks) legs.Zin situ is calculated from the data from the
SPP-100 and the 260X. The correlation coefficient with respect to the CB legs data points is 0.88
and the best fit regression coefficient is 0.82, indicating an acceptable agreement betweenZin situ

andZradar .

instruments differ by several orders of magnitude and are not coincident. The lack of coincidence
arises because the radar during DYCOMS-II had a 140 m dead-zone so that the first radar return
came from volumes∼ 150 m below the flight level. Further, departures from the Rayleigh scat-
tering regime at the tail of the DSD have not been accounted for. However, the error due to the
expected height dependence ofZ (increasing from cloud top to cloud base and decreasing from
cloud base to the surface, seee.g., Vali et al. (1998)) is evident in Figure 3: CT points tend to
be to the right of the 1:1 line and SC points tend to be to the left, indicating lower and higher
Zin situ thanZradar values respectively. Because this error is most likely smallest for the CB legs,
we calculated correlation coefficients (r) and best fit regression coefficients (s) for these legs. No
coefficients were calculated for RF01 and RF05 because not enough data points were available to
be statistically reliable. WithZin situ estimated from the SPP-100 and the 260X,r varied between
0.73 and 0.89 ands between 0.69 and 1.07. With regard toZin situ estimated from the SPP-100 and
the 2D-C,r varied between 0.82 and 0.97 ands between 0.70 and 1.11. Those numbers provide
guidance when interpreting uncertainty but overall indicate a level of agreement which we find
satisfactory.
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3. Analysis methods
The in situ and remotely sensed data complement each other nicely. Computations ofR from
the in situ data are relatively unambiguous, but can be sensitive to errors in measurements of the
larger drops, which can be poorly sampled, particularly given their low and variable concentrations.
The better sampling statistics of the radar help to solve this latter problem and to the extent the
ambiguity between the measuredZ and the desiredR can be resolved by thein situ data the radar
can be used to quantify precipitation over a vertical plane as opposed to along a line defined by the
trajectory of the aircraft. Although there are many objections to the use of genericZ-R relations,
we minimize the inherent errors by using thein situ data to tailoring expressions valid on a flight
to flight and level to level basis.

To do this we work entirely within situparametric representations of thein situdata. That is we
fit functional forms to thein situ data and then estimate the relationship betweenR andZ implied
by these functional forms. The motivation for working entirely with thein situdata is that it is self
consistent, and as argued above,Zin situ is consistent withZradar , moreoverZradar data was not
available for the surface legs. The motivation for fitting the data is that it reduces the amount of
data one has to work with to a manageable level, with no apparent loss in vital information, and
it provides a framework for estimating uncertainties. Further, to the extent one is confident in the
fits, fitting can supply us with some extra information by extrapolating the fit to drop diameters
beyond the measurement range of the instrument.

a. Distribution fitting

The choice for a specific fitting function is to a certain extent an arbitrary one and although other
distributions (such as the gamma function) also are attractive, we have chosen to use the lognormal
one, partly because the lognormal function has been applied successfully in the past (e.g., Feingold
and Levin (1986) and references herein, and Gerber (1996)) and partly because we were most
familiar with it. Another attractive feature of the lognormal distribution is that it is the expected
distribution for a drizzle spectrum which is produced through a coalescence process dominated
by log-range (in diameter or mass space) interactions (Aldous 1999). The lognormal distribution
function is given by:

N(D) =
N0

D
√

2πln2σg

e
−(lnD−lnD)2

2ln2σg , (1)

with N(D) the number of drops per size interval,N0 the total number of drops,ln2σg =

(lnD − lnD)2 andD the diameter. Advantages of a lognormal distribution are that higher pow-
ers of a DSD are lognormally distributed as well and that distribution parameters have physical
meaning:Dg is the geometrical mean diameter or median of the size distribution given by:

Dg = elnD, (2)

andσg represents the geometric standard deviation or width of the distribution. Thus the fitting
parameters act as proxies for the behavior of the DSD’s in time and space, thereby effecting a
considerable reduction in the data.
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We fitted truncated lognormal functions to the observed DSD’s (following Feingold and Levin
(1986)). This constrains the fitted distribution to have the same moments as the observed distri-
bution over the measured size range. We fitted two lognormal distributions: one to the CDSD
and the other to the DDSD. Figure 4 illustrates that this makes sense because two distinct modes
are evident in the DSD. The lognormal distribution functions are fitted to DSD’s averaged over
two minutes (equivalent to roughly 12 km). The choice for an averaging period of two minutes is
dictated by the DDSD and is a trade off between a longer period which would reduce the sampling
error and a shorter period which would allow more details to be kept in the spatial and temporal
scales (see also Appendix A).

In order to derive the uncertainties in the fitting parameters, an uncertainty in the DSD’s has to
be estimated. Because the exact instrumental error in the measurements is difficult to establish, we
have chosen to take the variance in the DSD as such. A disadvantage of this is that the variance
contains a large contribution (especially with respect to the larger drizzle drops) due to under
sampling by the instruments. In order to overcome this drawback we reduce the output frequency
of the in situ instruments by applying an intermediate averaging period of 20 seconds and define
the standard deviation in the 2 minute averaged DSD as the square root of the variance in those
six intermediate DSD’s (for more information see Appendix A). Once the fit is determined, the
uncertainties in the fitting parameters are calculated by first computing theχ2 value of the fit and
next by determining how much the fitting parameters (one at a time) have to be varied in order
to raise theχ2 value around its local minimum by 1. (Bevington and Robinson 1992). For more
information see Appendix A.

Before integrating the lognormal distributions to calculateR andZ we need to specify integra-
tion limits. For the CDSD the lower limit and upper limit of the size range of the SPP-100 are taken
asDmin andDmax respectively. For the DDSDDmin is taken equal toDmax of the CDSD in order
to avoid either an overlap or a gap between the two distributions. For the standard calculations
we chose to extrapolate the lognormal fit toDmax = 1 mm. In section 5. sensitivity studies are
presented to show the sensitivity of the choice forDmax. More technical details about the fitting
can be found in Appendix A.

In Figure 5 an illustration of the fitting parameters acting as proxies for the behavior of the total
DSD’s is provided. In Figure 5 (panel a) two CDSD’s measured by the SPP-100 and two DDSD’s
measured by the 260X are shown, both are two minute averages from the first CT leg from RF07.
One shows DSD’s during a period of heavy drizzle while the other is representative of a period
with light drizzle (rain rates four times as low). If we compare the DSD’s we see that during the
period of heavy drizzle the CDSD has a broader distribution, with a larger mean diameter and
fewer droplets. The heavy drizzle DDSD shows a higher count of drops and a slightly larger mean
diameter. Whether or not there is a difference in broadness is hard to judge by eye. The same
information can be obtained, but much faster, from Panels b, c and d which show the evolution of
N, Dg andσg along the flight leg, both for the SPP-100 and the 260X. The two DSD’s shown in 5a
are the ones at 23 min and 29 min respectively, with the one at t = 23 min being the heavy drizzle
one.

With help of the lognormal distribution functions we analytically calculated two values for the
in situ drizzle rate: one based on a combination of the 260X-SPP-100 data set and one based on a
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Figure 4: Leg averaged drop concentrationN and drizzle rateR as function of the drop diameter
D with regard to the second CT leg (closed circles) and first SC leg (open circles) of RF07.

combination of the 2D-C-SPP-100 data set. A comparison between the two shows good agreement.
Half of all the values of the drizzle rate based on the 260X combination are within one sigma of
the drizzle rate based on the 2D-C combination and 90% of the data points are within two sigma.
The differences between the two drizzle rates are mainly due to (small) differences in the right tail
end of the lognormal fits which magnify due to our choice of extrapolating the fits up to 1 mm.
When the calculations are done up to 500µm instead, the numbers rise to around 80% and almost
100% respectively. In the rest of the article we have chosen for the sake of brevity to presentin
situ values forR (denoted byRin situ ) andZ (denoted byZin situ ) based on data of the 260X and
the SPP-100 only. First of all because we consider the 260X data to be slightly more reliable and
secondly because the 2DC data had not enough acceptable 2 minute fits for the SF legs to ensure a
reliableR-Z relationship needed for the radar reflectivity conversion into drizzle rate (see section
below)

Because a reduced description of the DSD as collected across DYCOMS-II flights may be
broadly useful, and facilitate subsequent investigations some of which may want to check our
work, we have collected our fitting parameters into files which are available from the DYCOMS-II
archive.

b. Z-R relationships

An example of the rainrate reflectivity relationships that emerge from the fitted distributions during
RF02 is shown in Figure 6. This figure demonstrates the extent to which a power-law relation be-
tweenR andZ is supported by the data, it also shows that there is merit in performing the analysis
at different levels. The tendency ofR to vary less sharply withZ in the cloud is consistent with the
physical expectation of the precipitation flux being carried by smaller particles (whose fall velocity
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Figure 5: Data from the first CT leg of RF07. a) DSD of one 2 min period with heavy drizzle
(closed circles) and one 2 min period with light drizzle (open circles). For both the 260X (closed
diamonds) and the SPP-100 (open squares) b) drop numberN (note for the 260X,N is multiplied
by 1000) c) geometrical mean diameterDg and d) geometrical standard deviationσg as function
of time. The H denotes the 2 min period of heavy drizzle and the L the period of light drizzle.
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Figure 6: Drizzle rateRin situ versus reflectivityZin situ for RF02 at four different leg heights: CT
(closed circles), CB (open circles), SC (asterisks) and SF (encircled crosses). Best fits are also
given based on the two legs flown at each height.

is proportional toD2) near cloud top and larger particles (whose fall velocity is proportional toD)
lower down. Although above we showR − Z relations for each flight and for each flight level, in
the remainder of the manuscript we focus on two levels: one corresponding to the height of the SF
legs, which we call the surface, and one at the height of the CB legs, which we call cloud base.

More generally, in Table 2 we presentR − Z relations valid at cloud base and at the surface
for each flight for which significant drizzle was evident. The uncertainties in these relations are
estimated by propagating the uncertainties in our fits of the distributions. The relationships in Table
2 will be used in section 4.. To avoid ambiguity within situdrizzle rates, those calculated from the
radar reflectivity will be denoted byRradar .

4. Variability of drizzle
Keeping in mind that anR of 1 mm d−1 is roughly equivalent to a heat flux of 30 Wm−2 (which is
in general comparable to half the net long-wave radiative flux divergence at cloud top), the flight
averaged drizzle rate〈R〉 in Table 1 gives a first impression of the importance of drizzle for the
overall energetics of the PBL. Based on this, the seven flights naturally divide into three groups.
RF02 and RF07 can be characterized as ‘heavy’ drizzle cases, while in flights 3, 4 and 8 only a
modest amount of drizzle reached the surface. Both RF01 and RF05 belong to the ‘very light’
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flight a n a n
level SF CB
RF02 1.66± 0.27 0.75± 0.13 2.66± 0.25 0.70± 0.04
RF03 0.94± 0.38 0.62± 0.15 1.82± 0.19 0.61± 0.03
RF04 0.86± 0.49 0.58± 0.18 1.66± 0.12 0.59± 0.04
RF07 1.12± 0.23 0.66± 0.13 2.13± 0.10 0.68± 0.04
RF08 1.22± 0.24 0.47± 0.04 2.68± 0.10 0.46± 0.01
’night’ 1.31± 0.14 0.74± 0.04 2.03± 0.07 0.64± 0.01
’all’ 0.51 ± 0.03 0.34± 0.02 2.27± 0.06 0.48± 0.01

Table 2: Values for parameter a and power n in theR-Z relationshipR = aZn based upon the
data of the SPP-100 and 260X, both of the SF legs and the CB legs. For RF01 and RF05 not
enough data points are available from thein situ data so in these casesR was related toZ using a
relationship derived from the average of either all the nocturnal flights, or all of the flights.

or ‘no drizzle’ group because only trace amounts of drizzle reached the surface. Incidentally a
qualitative analysis of radar echoes from RF06 and RF09 whose flight pattern were not conducive
to the type of analysis we wished to conduct put them in the ‘heavy’ and ‘very light drizzle’
categories respectively.

The flights during DYCOMS-II support the common view of an existing diurnal cycle in the
drizzle rate (i.e., higher drizzle rates during the night compared to lower daytime values), especially
if RF06 (nighttime flight) and RF09 (daytime flight) are taken into account as well. However, the
experimental strategy did not allow us to detect an early morning maximum in the drizzle rate
(Kraus 1963).

In the analyses we define drizzle as having a drizzle rate of at least 0.03 mm d−1 to avoid
different minimumRradar thresholds for every leg. (Note that this lower limit is equivalent to the
removal of one liter water per day over an area of 5 by 6 m.) Hereafter, we will refer to drizzle
rates of 1 mm d−1 and higher as heavy drizzle.

a. Interflight variability

While most physically based investigations have rightfully focused their attention on physical in-
teractions, less attention has been devoted to the question of the statistics of drizzle as a function
of cloud macroscopic properties. It seems worthwhile to take a more empirical approach and ask
whether in spite of such complexities observed drizzle rates co-vary in some simple way with
cloud macrophysical properties. Such an approach is motivated by the realization that many sim-
ple microphysical models produce such scaling in their stationary limit (e.g., Pincus and Baker
(1994)), and recent observational work which suggests that the cloud averaged drizzle flux scales
with H4/N, whereH is the cloud depth andN denotes the cloud droplet concentrations in adi-
abatic regions of the cloud layer (Pawlowska and Brenguier (2003)). In addition to providing a
target for future theoretical work, such relationships (insofar as they exist) can form the basis for
parameterizations of drizzle in large-scale models, and also aid retrievals of drizzle from satellite
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flight H N ∆T Rradar,cb

[m] [ cm−3] [K] [mm d−1]
RF01 265 140 n/a 0.05
RF02 360 58 1.6 1.24± 0.17
RF03 390 254 3.3 0.18± 0.02
RF04 465 205 2.2 0.76± 0.07
RF05 275 151 3.1 0.04
RF07 515 135 1.9 1.65± 0.13
RF08 330 113 2.3 0.38± 0.02

Table 3: Macroscopic variations in cloud structure and rainrates among flights. See text for defini-
tions.

derived estimates of cloud macroscopic properties.
To begin, we follow the lead of Pawlowska and Brenguier (2003) and ask to what extent the

drizzle rate at cloud base scales withH andN . In this analysis we estimateH using the data
tabulated in Stevens et al. (2003a), which corresponds to the difference between the flight averaged
cloud top height,〈hct〉 , and the flight averaged cloud base height,〈hcb〉 . The former is derived from
lidar measurements of cloud top made during the three RL legs (roughly 90 minutes of 1 s−1 data).
The latter is based on roughly four hours (per flight) ofin situdata collected from flight legs flown
in or below the cloud layer. Variability inhct andhcb was typically 20-50 m, although in RF04
and to a lesser extent in RF05 there is evidence of an almost discreet change in cloud top and base
indicative of sampling across two distinct air-masses. To estimateN we average the SPP-100 data
from all the cloud legs, which typically corresponds to two hours of data. BecauseN tends to vary
relatively little through the depth of the cloud, such an average seems warranted. For the radar
derived drizzle rate at flight averaged cloud baseRradar,cb we use reflectivity the time-series from
the CT and RL legs, which corresponds to, on average, 150 min of data per flight.

Values ofH, N andRradar,cb calculated in the above described manner are given in Table. 3. As
illustrated in Figure 7 these data seem to support anRradar,cb ∝ H3/N relationship. This finding
differs slightly from theH4/N scaling forRcloud that Pawlowska and Brenguier found for clouds
sampled during the second Aerosol Characterization Experiment (ACE-2).

Past studies have also attempted to relate drizzle to satellite based estimates of particle size,
such as the cloud-top effective radiusre. For instance, using ground and satellite based remote
sensing Han et al. (1995) argue that drizzle could be associated with occurrences of satellite de-
rived estimates ofre > 15µm, and that clouds could be categorized as non precipitating when
re < 10µm. Using onlyin situ data Gerber (1996) presents evidence that wheneverre exceeds a
16 µm threshold, drizzle tends to be heavy. He argues that this suggests the presence of a coales-
cence threshold, (e.g., Hocking (1959)). Shiptrack data analyzed by Ferek et al. (2000) also show
evidence of a threshold-like dependence of drizzle on cloud-top effective radius, with a threshold
lying somewhere between 9 and 14µm. Note that the somewhat more fuzzy threshold behavior in
the Hanet al.,and Fereket al.,studies relative to the measurements of Gerber may in part be due to
the different nature of the sampling. Gerber’s measurements essentially show a discreet change in
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Figure 7: Cloud base drizzle rate,Rradar,cb , as a function of cloud depth cubed,H3, divided by
the total cloud drop numberN . Each flight is denoted by a specific marker: RF01 asterisks, RF02
closed circle, RF03 open square , RF04 open triangle, RF05 diamond RF07 open circle with dot,
RF08 open circle.

the structure of the local droplet spectrum as its effective radius increases beyond a certain value.
The other studies speak more to the aggregate properties of precipitating versus non precipitating
cloud layers. For the purposes of this study we are more interested in the latter.

To address the question of a possible relationship between the drizzle rate andre we compare
Rradar,cb with re estimated usingin situdata collected along the cloud top legs. For these purposes
we estimatedre from the fits to the SPP-100 and 260X data. Results from all the analyzed flights
are plotted in Figure 8. Overall they support the idea of threshold-like behavior between 10 and
15µm. However the transition between large and small values ofRradar,cb is not particularly sharp
and there is evidence of systematic differences among flights. Because for an adiabatic cloudre

scales withH1/3, this is not likely to be due to systematic differences in relative distance from
cloud top among flights (and hence biases in our estimate ofre). It is, however, consistent with the
fact that ifNr3

e ∝ H, to the extent thatRradar,cb ∝ H3/N holds on the 12 km scale, one would
expectRradar,cb to depend on bothre andN according toRradar,cb ∝ r9

eN
2.

Finally we compare drizzle rates to the difference∆T between the 11 and 4µm brightness
temperatures as measured by GOES-10. This is instructive because the comparison between the
drizzle rate andre as derived from satellite are made more difficult by the lack of standard nocturnal
retrievals forre, and the tendency of the daytime retrievals to fail in regions where the cloud
become more broken. Because drizzle seems to correlate with more broken clouds (see Figure 1)
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Figure 8: Cloud base drizzle rate,Rradar,cb , versus the effective radiusre at cloud top for all flights
except RF05. Symbol follow the convention of Figure 7, with each data point representing two
minutes of data.

such a failure might significantly bias the measurements. Using∆T instead is feasible because
e.g., for a cloud with an optical depth of 15, changes inre from 6-12µm will result in a decrease of
∆T from approximately 5 K, to nearly 1 K. In contrast, such changes at a fixed value ofre would
require a 15 fold reduction in the optical depth (cf.,Figure 1 of Perez et al. 2000). All flights except
RF08 were nocturnal, so∆T values were estimated using the 1200 UTC GOES-10 image, while
for RF08 the 0300 UTC image was used. Using∆−1

T as a proxy for drop size, Table 3 shows a clear
tendency for bigger drops to be associated with fewer drops and more drizzle. RF06 and RF09,
whose flight patterns were not conducive to the quantification of drizzle, also fit this pattern. By
using0.25K < ∆t < 2K as a proxy for regions whereR > 1 mmd−1 then the nightime imagery
can be exploited to estimate drizzle rates over larger areas. In the 1200 UTC GOES nighttime
imagery, the box bounded by 35S, 30S, 125W and 120W hasR > 1 mmd−1 in overcast regions
27% of the time. This proportion of drizzle is consistent with the fact that approximately one third
of the DYCOMS flights measured significant to heavy drizzle at cloud base.

b. Horizontal variability

Figure 9 and 10 show the spatial distribution of drizzle for flights RF02 and RF07, the two night-
time flights with the highest〈R〉 . The precipitation rate at flight level can be read by subtracting
the baseline height and associating 100 m increments with 1 mm d−1. For both flights we show
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Figure 9: Drizzle rateR during RF02 for the two SC and CT legs as function of location along
the flight leg. HereRin situ (closed circles) andRradar (asterisks) are plotted relative to a baseline
denoting the measurement level, with 1 mm d−1 corresponding to 100m. The flight direction
(counterclockwise (CCW) and clockwise (CW)) is specified in the upper left corner of each panel.

data from the two SC and CT legs since they form a representative cross section of the whole flight
and were flown consecutively (except for the case of RF07 where the CT legs were interrupted by
the remote sensing leg whose radar echos shown in Figure 2).

It is reassuring to see the similarity in spatial structure (on the order of ten km scale) between
the in situ data and surface radar data. To a certain extent this is expected but on the other hand
several factors could have contributed to differences between the two. Drizzle measured at a cloud
base of 500 m could be expected to reach the surface nearly 30 min later (i.e., assuming a mode
diameter of 100µm which corresponds to a fall speed of 0.3 cm s−1), hence if the timescale of
drizzle evolution is much shorter than this we would anticipate little coherence in the vertical.
The degree of vertical coherence observed is consistent with the apparent temporal coherence, as
evident in the persistence of the envelope of precipitation among two or even more legs. (Keep in
mind that consecutive legs are flown in opposite direction, thusR in the different panels displays
a mirror symmetry.) Other indications of a time scale for drizzling regions of at least an hour and
potentially much longer can be found when radar echo images of consecutive legs are studied by
eye: a clear persistence on larger scales is quite often visible.

An apparent difference between RF02 and RF07 is the higher background drizzle rate of RF07.
The large-rain rates observed during RF02 appear to be localized into small regions or cells. The
contribution of such cells to the overall drizzle rate of RF07 seems less pronounced. The net
contribution of regions of varying precipitation rate to the observed accumulation is perhaps better
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Figure 10: As in Fig 9, but for RF07

illustrated in Figure 11. Panel a of this figure presents normalized distributions ofRradar for RF02,
RF07 and RF04; RF03 and RF08 behave similar to RF04 and are left out for clarity. The drizzle
rate on the vertical axis denotes the amount of drizzle in the bin interval as a fraction of〈R〉
(Table 1). Note that the bins on the horizontal axis are logarithmic. Panel b shows the cumulative
distribution ofRradar scaled with〈R〉 as function of the fraction of the total drizzling area. The
percentage of the total flight path length with drizzle at the surface can be obtained from Table 4.
The straight line depicts a uniform distribution.

The visual similarity among the three distributions in Figure 11a is supported by a more quan-
titative analysis, suggesting that the distribution of drizzle intensity could be captured by a simple
parametric representation. However because of the logarithmic abscissa, a rightward shift of the
distribution sharply increases the extent to which the relatively rare, but intense drizzle events con-
tribute to the overall distribution. This is evident in Figure 11b which shows that in the case of
RF02 only 20% of the drizzling area is responsible for 80% of the total amount of drizzle removed
from the boundary layer. Further insight into these issues is provided in Table 4 which examines
how frequently drizzle reaches the surface on a given flight, and what fraction of the drizzle can be
considered heavy. Besides showing once more the importance of the heavy drizzling cores to the
overall drizzle rate the Table also shows that low overall drizzle rates correlate with a low intensity
of drizzle. Interestingly this implies that the greater the value of〈R〉 the more likely it is that
drizzle (of a significant amount) covers small spatial areas—which is consistent with the idea that
drizzle could induce a transition in cloud structure (Stevens et al. (1998) and Paluch and Lenschow
(1991)).
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Figure 11: a) Distribution of the drizzle rate intensity for RF02, RF07 and RF04 as function of the
relative contribution to〈R〉 and b) the cumulative distribution ofR scaled with〈R〉 as function of
the fraction of the total drizzling area. Symbol representation similar to Figure 7.

c. Dependence on droplet spectra

Even though it is to be expected from first principles, and clearly supported by Figure 7, measure-
ments are not available to examine the influence of local cloud depth on local drizzle rates. Al-
though cloud top can be detected when flying above the cloud and looking down, the radar does not
well represent cloud base. Similarly, when flying below the cloud the local lifting-condensation-
level can be used as a proxy for cloud base, but in this case no cloud top information is available.
On the other hand, we can gain some insight by examining the correlations between〈R〉 and the
parameters of the fitted droplet distributions. Figure 12 shows that the best correlation is found
between the number of drizzle drops andRin situ . This indicates that increased drizzle is not ac-
companied by a change in shape of the part of the droplet distribution associated with drizzle. This
suggests that it might suffice to model the drizzle mode using a one parameter distribution. There is
also evidence of a weaker negative correlation betweenRin situ and the number of cloud droplets.
Together with a constantDg, both for the cloud and the drizzle drops, and a slight broadening of
the CDSD, this is consistent with the scavenging of cloud droplets by precipitation. For another
example see Figure 5b. Signs of precipitation scavenging were also noticed by Austin et al. (1995);
e.g., their Figure 7.

Using the fact thatDg andσg appear to be (nearly) constant over a leg, we estimate how much
of the variability inRin situ can be associated with variability inN . To do this in Figure 12a we
compareRN with Rin situ , whereRN is the valueRin situ would have ifDg andσg were fixed at
their mean values.RN captures the variability ofR very well and no systematic bias is evident.
This is also demonstrated by the fact thatR andRN (with the over-bar denoting leg averaged
values) are so close that the two lines indicating those values in the figure are indistinguishable.

Figure 13 reveals that similar results are valid for other legs as well. The figure presentsR
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Figure 12: Correlation between thein situ drizzle rateRin situ and the fitting parameters for the
first cloud base leg of RF07. a) Drizzle rateRin situ in time (closed circles) and drizzle rateRN

(asterisks) calculated as function of droplet concentrationN and the leg averaged values of the
geometric meanDg and the geometric standard deviationσg. The thin lines denote the leg averaged
value of both drizzle rates; because they are nearly identical for this leg the lines lie on top of each
other. b)Rin situ versusN (note that the drizzle drop number is multiplied with a factor 1000 in
order to fit both drop numbers in one plot), c)Rin situ versusDg and d)Rin situ versusσg. The data
points based on the 260X are denoted by the closed circles; those based on the SPP-100 by the
open circles. The leg averaged values ofDg andσg used in the calculation ofRN are shown by the
thin lines in c) and d).
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flight LR/Ltot LRcore/Ltot Rcore/Rtot

[% ] [%] [%]
RF01 0.1 0.0 0.0
RF02 27.0 6.6 85.4
RF03 27.7 0.6 19.7
RF04 31.1 1.2 30.6
RF05 0.0 0.0 0.0
RF07 85.6 15.8 64.1
RF08 44.1 1.9 23.7

Table 4: Values for each flight of the percentage of time or space that drizzle is detected at 70
m above the sea surface, that heavy drizzle(R > 1 mmd−1) is detected and the contributions of
heavy drizzle to the total drizzle rate

versusRN for all seven flights. The correlation between the two is high withr of 0.95 and the data
does not deviate a lot from a one-to-one line. Comparison ofR with RDg andRσg (calculated with
local values ofDg andσg respectively and leg averaged values of the other two fitting parameters)
displays more scatter and lower correlation coefficients, albeit still with acceptable values. With
respect toR andRDg , r has a value of 0.73 and forR andRσg r is 0.78. An interesting side effect
of RN explaining most of the variability inRin situ is the fact that a drizzle rate calculated with leg
averaged values for all three fitting parameters (thus representing a leg averagedRN ) has the same
high r of 0.95, due to the fact that the calculation of the drizzle rate is linear inN .

d. Subcloud evaporation

To investigate evaporation in the subcloud layer we calculate the fraction of the cloud base drizzle
rate which reaches at the surface, and plot this versus the depth of the subcloud layer in Figure
14. Here our analysis is limited to time periods when we have simultaneous estimates ofRradar,cb

andRradar,sfc . Even for rather shallow subcloud layers most of the precipitation evaporates before
reaching the surface. Despite the spatial inhomogeneity of drizzle the leg averaged evaporation
values are fairly constant for each flight and display only a slight dependence on the subcloud
layer depth. The relatively less evaporation which occurs in some legs of RF02 (and to a lesser
extent RF07 as well) may reflect the influence of humidified cores,i.e., the correlation between
sub-segments of the leg with increased precipitation and increased humidity in the subcloud layer.

5. Discussion
It might seem perplexing that in section 4c. we show thatR scales withN , yet in theZ-R rela-
tionship scales asZ2/3. For a lognormal distribution, one would expect that if variations inR are
explained by variations in N, thenR should scale withZ, rather than withZ2/3 (e.g., Feingold and
Levin (1986)). For two reasons, this is not as contradictory as it seems. First, the other parameters
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Figure 13: Leg averaged values of drizzle rateRin situ versus drizzle rateRN (see Figure 12 for
definition) for each flight. Symbol representation identical to Figure 7..

in the lognormal distribution,i.e., Dg andσg, are not independent of N, as the simple argument
which leads to theR ∝ Z scaling requires. Additionally, the tendency ofR to scale withZ2/3

is based on log-space regressions, which weight points irrespective of their contribution to the net
drizzle rate, i.e., points which contribute negligibly count as much as points which weight more.
The finding that N variation explain most of the variability inR is based on relations in linear
space, which discount points whose contribution to the netR are negligible.

These differences highlight just some of the difficulties in theR-Z relationships which form the
basis for the underlying precision of our analysis. Although we have tried to bound any uncertainty
by a careful consideration of errors, it is also useful to investigate how sensitive our results are to
some of the underlying assumptions, such as our decision to use extrapolated log-normals, or our
belief that it was best to tailorR-Z relations on a flight by flight basis. To answer these questions
we provide estimates of surface rainrates among flights using two alternative methods of analysis:
no extrapolation of the lognormal functions and a genericR-Z relationship for DYCOMS-II.

The ‘no-extrapolation’ relationship was computed by determining the maximum diameter
present in the measured DSD (with respect to every two minute average) and using this value
as upper limit in our calculation of respectiveRin situ andZin situ . In Table 5 we present the flight
averaged surface drizzle rates computed with the thisR-Z relationship. The〈R〉 values are higher
than in Table 1 (all within one standard deviation, except RF07), with the largest increases going
with the larger drizzle rates. The reason for this is that truncation of the spectra leads to higher
values of both the slope (n) and pre-factor (a) of theR − Z relationship. With respect toZin situ
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Figure 14: Evaporation of drizzle in the subcloud layer defined as (Rradar,cb -Rradar,sfc )/Rradar,cb

as a function of mean cloud base heighthcb. Each point represents one flight leg of approximately
30 minutes. Symbol representation identical to Figure 7.

values up to roughly 0dBz the relationships are within one standard deviation of the ones given in
Table 2 while for higherZin situ values they are within two standard deviations.

Table 5 also showsR-values derived using aR − Z relationship based on all the nighttime
flights (see Table 2). These values are lower than those in the first column of Table 5 but are
within one standard deviation of the values in Table 1. Inclusion of the daytime flight, RF08, in
the derivation of theR−Z relationship (see Table 2) would induce large changes but based on just
one flight it is not warranted to assign this to systematic day-night differences.

Both sensitivity tests - Table 1 vs. Table 5, and the two columns of Table 4 - indicate that the
specific assumptions for the conversion of radar reflectivity to drizzle rate do not unduly influence
the basic conclusions in Section 4.. The tests also indicate that the drizzle rates used in Section 4.
are likely to be conservative.

While it is clear that it is difficult to make judgements about the absolute accuracy of the drizzle
rates, it is worth emphasizing that in situ and radar-derived values are in reasonable agreement (e.g.,
Figure 3, 9 and 10). Another set of R-Z relationships, derived using all in-cloud legs on a flight by
flight basis, and using averages of observed droplet spectra (not fits) over 5-min periods, yielded
Rradar,cb values about a factor of two above those of Table 1 and a factor of five higher for RF02.
These differences are larger than the uncertainty estimates derived in Section 3 in part due to not
including in these latter estimates a stratification by height of the in-cloud spectra. Even so, the
differences are (if RF02 is excepted) of the order of accuracy commonly connected with radar-
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flight drizzle rate drizzle rate
no extrapolation overall night Z-R

[mm d−1] [mm d−1]
RF02 0.46± 0.17 0.27± 0.04
RF03 0.07± 0.05 0.06± 0.01
RF04 0.13± 0.12 0.11± 0.01
RF07 0.91± 0.34 0.73± 0.09
RF08 0.15± 0.04 0.09± 0.01

Table 5: Drizzle rates at 70 m height above the sea surface for the whole duration of each flight
based on radar data. The conversion from radar reflectivity to drizzle rate is done withZ-R rela-
tionships derived fromin situ instruments (SPP-100 and 260X) without extrapolation of the lognor-
mal fit for each individual flight and with one generic relationship (based on all nighttime flights).

derived rainfall rates. The fact that the drizzle rate presented here might be on the low side only
strengthens our conclusion about the prevalence and importance of drizzle in stratocumulus.

6. Summary
We have analyzed microphysical data obtained during the Dynamics and Chemistry of Marine
Stratocumulus -II field study (DYCOMS-II). The field study consisted of nine flights with the
NCAR C-130 aircraft in stratocumulus topped boundary layers and took place in July 2001 in the
eastern Pacific region west-southwest of San Diego. Seven out of nine flights were flown during
the night and seven out of nine flights consisted of a circular Lagrangian flight pattern. DYCOMS-
II was blessed with favorable conditions: relatively uniform, and spatially extensive stratocumulus
cloud decks were probed with few breaks. Thus, the visually uniform looking clouds hid rich
differences in microphysical cloud structure.

The combined availability of the Wyoming cloud radar (Vali et al. 1998) andin situ micro-
physical instruments during the Dynamics and Chemistry of Marine Stratocumulus -II field study
(DYCOMS-II, Stevens et al. 2003a) provided a unique opportunity to obtain estimates of drizzle
rates in nocturnal marine stratocumulus. The results show that the prevalence of drizzle is higher
than formerly thought. Out of seven flights analyzed, five had measurable mean precipitation at
the surface, two with a substantial amount.

The drizzle rates have been estimated with respect to each flight, based on bothin situ and
remotely sensed data. Truncated lognormal functions have been fitted to the cloud droplet size
distribution as measured by the SPP-100 and to the drizzle drop size distribution as measured by
the 260X and 2D-C. Based on those fits, the drizzle rateR and reflectivityZ values have been
calculated analytically over a diameter range up to 1 mm for each leg. Next,R-Z relationships
were derived for each flight, both close to the surface and at cloud base height. Those relationships
were used to convertZradar data at those two height levels into a rain rate. The radar measuredZ
close to the surface during all legs except the surface legs so an almost continuous estimate of the
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surface drizzle rate could be obtained. In this way a more accurate flight averaged drizzle rate can
be estimated than one based onin situ data alone. Yet, the more intermittent results of thein situ
instruments are also able to characterize the amount of drizzle of a particular flight very well (i.e.,
indicate whether the drizzle rate is ‘very light’, ‘moderate’ or ‘heavy’), despite the inhomogeneity
of the drizzle.

The general picture of drizzle in stratocumulus arising from the DYCOMS-II flights is one
of large flight averaged drizzle rates being mainly due to the occurrence of localized patches of
strongly enhanced precipitation. Together with low flight averaged drizzle rates correlating with
a low intensity of drizzle this strongly suggests that drizzle could induce a transition in cloud
structure (Stevens et al. (1998) and Paluch and Lenschow (1991)). Variability in drizzle rates
among flights correlates well with cloud depth cubed divided by the total cloud droplet number,
while variability in thein situ drizzle rate within each flight is explained by the variability in total
drizzle drop number. Thus higher precipitation rates are not due to a change in shape of the drizzle
drop distribution but are mainly caused by the appearance of larger drizzle drops - in the right tail
end of the distribution - as a consequence of a higher total number of drizzle drops. Consequently,
leg averagedin situ drizzle rates are well represented by values calculated by using leg averaged
droplet distributions. On the macroscopic scale the drizzle rate also correlates negatively with∆T
(the difference between the 11 and 14µm brightness temperatures as measured by the GOES-10
satellite), and shows signs as well of threshold-like dependence onin situcloud top effective radius.
Evaporation of drizzle in the subcloud layer is rather high, even for shallow boundary layers, and
displays only a weak dependence on the depth of this layer.
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APPENDIX A
Fitting procedures

The first step in the fitting procedure is to calculateDg andσg andN (see for the definition
of these terms section 3 a.) from the data directly. The lognormal function specified by these
values, however, is biased towards the higher moments, and in general, a better fit can be obtained
by taking into account that the measured DSD’s are truncated at both ends (defined asDmin and
Dmax). The so called truncated lognormal fit can be defined as the lognormal function having
the sameDg andσg andN betweenDmin andDmax as the data. In Feingold and Levin (1986)
analytical relationships are given betweenDg andσg of the non-truncated lognormal function and
the truncated lognormal function. To show the goodness of a certain fit it is common to use the
so-calledχ2 test. χ2 is defined as the ratio between the variance of the fits2 and the variance of
the dataσ2 multiplied by the degrees of freedomν = n−m, with m the number of parameters (in
our case equal to 3) used to fit a function ton data points.

The variance of the fits2 is given by:

s2 =
1

ν
Σ

1/σ2
i

1/NΣ1/σ2
i

[Ni − f(Di)]
2, (3)

with i the index representing the bin-number of the DSD. Once theχ2 value is known, a statistical
measure of goodness of fit can be determined by assuming that the errors in the data points are
normally distributed. A rough estimate whether a fit is statistically ‘good’ or not can be obtained
by comparingχ2 andν; for comparable values of the two the fit is acceptable. The applied length
of the intermediate averaging period of 20 s is based upon this becauseσ2 calculated from 6 20
s averages ensures a statistically good fit. While taking the standard deviation based upon one
averaging period of 120 s gives a value forχ2 << 1., indicating an overestimation of the variance
in the data (Bevington and Robinson 1992)

Besides a statistical measure of the goodness of fit, uncertainty estimates for the fitting param-
eters should be given. We determined rough estimates of those uncertainties by variation ofχ2

round its local minimum:

σ = ∆a

√
2

χ2
1 − 2χ2

2 + χ2
3

, (4)

with a one of the fitting parameters andχ2
i the value ofχ2 for a1, a2 = a1 +∆a anda3 = a2 +∆a.

It is important to realize that this uncertainty estimateσ should be interpreted as the variation
needed ina to increase the minimum value ofχ2 by 1. (Bevington and Robinson 1992).

So after the calculation of the truncated fitting parameters the value ofχ2 is calculated, to-
gether with an estimate of the uncertainty in the three fitting parameters. The calculations of the
uncertainties in the parameters supply six otherχ2 values, comparison of these values show that
the truncated lognormal fit is often (more often for the CDSD’s than for the DDSD’s) but not al-
ways the fit with the lowest value forχ2, i.e., the best fit available. Despite this the values of the
fitting parameters of the truncated lognormal fit are taken because it is the fit which conserves the
moments of the data and in general the values of the fitting parameters would vary only slightly if
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the absolute best fit was taken. (Another reason not to always trust theχ2 method is the fact that in
the derivation of the least square method the assumption is made that uncertainties in the data are
normally distributed, which may not be the case for the DSD which might suffer from more under
sampling at the larger bin sizes.)

Because drizzle drops have a small incident rate some caution is necessary when fitting a DSD.
In order to ensure enough counts in a sufficient number of bins the 1 second data of the SPP-100,
260X and the 2DC are averaged over 120 s. The length of this period is an optimum between
reduction of the sampling error and conservation of the temporal and spatial scales. The lower
limit for the necessary number of counts in one bin is 5, this number is often taken as one of
the requirements to be able to classify a distribution as Gaussian instead of Poisson. However,
bins with 4 counts or less are not disregarded despite the violation of the Gaussian distribution
assumption. This is justified because almost all the bins with 4 counts or less are for the larger
drop diameters and the fitting parameters are not sensitive to leaving out quite a number of bins
of the largest drops. On the other hand the parameters are sensitive to the opposite; reducing the
number of bins by removing bins with small drop diameters. This is easily understood when one
realizes that the bins with small diameter generally contain the most counts, thus contributing most
to the moments of the DSD. In order to fit two lognormal functions to the two physical modes
instead of to the DSDs of the two different instruments, the fit to the CDSD is subtracted from the
data of the DDSD (only for the region in which the measurements overlap) before fitting the latter.

During the fitting procedure bad convergence of the fit is encountered on several occasions. To
deal with this several steps are taken. First of all, the data is always checked for the presence of
enough bins for a fit; all DSD’s with less than 10 bins containing data are disregarded. If there are
enough bins but the convergence is bad, adjustments are made to the left or right limit, because
sometimes the behavior at the DSD limits complicates the fitting. In all cases the fitting procedure
is disregarded if the number of bins becomes too small to ensure a good fit. And if the convergence
is still unsatisfactorily after these two corrections, the fitting procedure is abandoned and no fit is
calculated.
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