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ABSTRACT

Freezing experiments using large numbers of small drops are frequently used for the study of both homo-
geneous and heterogeneous nucleation of water and of other substances. For heterogeneous nucleation,
the spread in the observed freezing temperatures of drops has been shown to arise from the presence of
nuclei of different activities in the sample. In the past no quantitative assessment of the nucleus content
could be given independent of the drop sizes used. It is shown in this paper that from the observed freezing
temperatures of the drops one can derive both a differential and a cumulative nucleus spectrum. The di-
ferential spectrum represents the concentrations of nuclei which are active at specific temperatures and the
cumulative spectrum represents the concentrations of nuclei active at all temperatures warmer than the
selected temperature. The accuracies of the derived spectra were examined by Monte Carlo simulation
and are shown to be such that the concentrations are reliable to within factors of 2-4. The dependence of the
average freezing temperature on drop volume is shown in general to be determined by the shape of the
nucleus spectrum but is approximately exponential for many spectra.

1. Introduction and background

The presence of impurity nuclei, or motes, usually
limits the amount of supercooling that can be sustained
in a liquid. Mendenhall and Ingersoll (1908) were
probably the first to recognize that small droplets of a
substance can be supercooled to a much greater extent
than the bulk material due to sequestering of the im-
purity nuclei into a few of the droplets and thereby
limiting their effect. This approach was later used for
the study of nucleation by Vonnegut (1948), Pound
(1952), Turnbull (1952), and many others. More recent
applications of the droplet technique were reported by
Burns and Turnbull (1966), Price and Gornick (1967),
and Wood and Walton (1970). The aim in most of these
experiments had been to study the kinetics of the
nucleation process, primarily for homogeneous nuclea-
tion and to some extent for heterogeneous nucleation.
In order to arrive at deductions regarding the kinetics
of the process, the nature of the heterogeneous nuclei,
when present, was for the most part neglected or
treated with gross simplifications. Other investigators
concentrated on efforts to characterize the activities of
the nuclei. Rau (1944) realized that numerous freezing
nuclei were present in the water samples he examined
and associated a characteristic freezing temperature
with each of the nuclei. The distribution of freezing
temperatures for a set of drops (in histogram form) was
looked upon by Rau as a “spectrum” of the nuclei with
peaks in the distributions signifying specific types of
nuclei. Dorsey (1948) summarized earlier observations

and presented further evidence to show that special sites
on the container walls or on suspended impurities
determined the nucleation temperatures, Levine (1950),
following the same line of thought as Rau, considered
the chance allocation of distinct groups of nuclei of
different freezing temperatures into small volumes and
found a particular form for the function describing the
numbers of nuclei in each of the groups which agreed
with the experimental results of Dorsch and Hacker
(1950).

Bigg (1953) found that the volume-dependence and
the time-dependence of freezing temperatures in his
experiments could be explained by the assumption that
the probability of freezing per unit volume and per unit
time increases exponentially with decreasing tempera-
ture. Marshall (1961) suggested that Bigg’s formulation
is of general validity for heterogeneous nucleation and
that the pre-exponential factor in the probability rela-
tion characterizes the concentrations of nuclei in the
sample. Although not stated explicitly, Bigg’s assump-
tion implies that the nucleation process is controlled
primarily by molecular kinetics; furthermore, the
nucleus content is taken in this theory to be the same
for every drop from a sample.

The notion that activation temperatures are specific
properties of nucleating particles received strong sup-
port from calculations by Fletcher (1962). The results
of these computations, which were based on thermo-
dynamic considerations, showed that the nucleation
temperatures can be uniquely related to the crystalline
characteristics and to the sizes of the particles.
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The relative importance of kinetic effects versus the
nature of the nucleating particles was investigated by
Vali and Stansbury (1966). From experiments on the
time-dependence of freezing nucleation they deduced
that the probability of freezing for a drop at temperature
6 and time ¢ can be written as

P(0,1)=/ P1<0,06)P2(0c,t)dec, (1)

where 6, are the characteristic temperatures of the
nuclei. The probability function P; characterizes the
propensity of nuclei to become active within a unit
time interval at temperatures other than their partic-
ular characteristic temperatures. The function P, a
function of 8,, represents the numbers of those nuclei
which at time ¢ have not yet become active. The results
of Vali and Stansbury' and later results by Vali (1969)
indicated that the P; function varies so rapidly with
temperature that nucleation is almost certain to take
place, under conditions usually encountered, within an
interval of ~=+0.25C about 6,.

For most purposes the 0.25C uncertainty resulting
from the fluctuating nature of the pre-nucleation phe-
nomena, is negligible compared to the wide range (10—
20C) which is found for the freezing temperatures of
drops of the same origin and size. Therefore, as a good
first approximation, each nucleus can be taken to be
effective at a temperature characteristic of that particu-
lar nucleus. Formally, this so-called “‘singular approxi-
mation” is equivalent to replacing P;(6,6.) in (1) by a
Dirac 6 function at 6=60.. The time-dependence in P2
can then be omitted so that the probability of freezing,
P(8), is determined solely by the distribution of charac-
teristic temperatures for the nuclei.

Despite the better understanding of the nucleation
phenomenon which arose from the research described
above, no immediate improvements were forthcoming
in the interpretation of nucleation experiments in terms
of quantitative nucleus contents. Experimental results
were presented almost universally in the form of histo-
grams. These could be used for qualitative comparisons,
but could not provide any absolute bases for evaluation
due to the dependence of the results on drop volumes.

It is the purpose of this paper to demonstrate that
quantitative evaluations of drop freezing experiments
can be made which are true representations of the
nucleus contents of the water from which the drops
originated. The derived concentration vs temperature
functions, or nucleus spectra, have been used success-
fully to describe the nucleus contents of precipitation
samples and the results of those measurements were
used to estimate the rate of ice formation in clouds
(Vali, 1968, 1971). The technique was also found to be

1 Substantially different results on cooling rate dependence were
reported by Gokhale (1965), but these were shown to be the re-
sults of temperature lags by Levkov and Genadiev (1966) and
Genadiev (1968).
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very useful in unambiguously evaluating the freezing
nucleating abilities of artificial sources of nuclei (Vali,
1968 ; Vali and Finnegan, 1970).

The most convenient experimental method for the
determination of the nucleus content is to divide the
sample into large numbers of drops of equal volume and
to simultaneously cool these drops while observing and
recording their freezing temperatures. The analysis
given in this paper is formulated primarily for use with
experiments of this type, although the results can
readily be adapted to other procedures. An extension of
the results to the general case of non-uniform drop
volumes is presented in the Appendix.

2. Differential nucleus spectra

The starting point for the following derivation is the
singular approximation that each particular freezing
nucleus becomes active at its characteristic temperature
independently of the time rate of change of temperature.

The basic data derived from drop-freezing experi-
ments are the freezing temperatures of the drops. The
problem then is to derive from these observations the
function k(f) describing the concentrations of nuclei
active in a unit volume of sample within a unit tempera-
ture interval about the temperature 6. This function is
similar in form to the usual representation of particle
size distributions (dN/dr as a function of radius), or to
the presentation of spectral energy as a function of
wavelength,

With the foregoing definition of %(6), the average
number 7 of nucleil which are active within a unit tem-
perature interval 6 in a drop of volume V can be written
as

@) =k@)V. 2)

The number of nuclei per drop which are active in the
temperature interval 8 to (#—db) is thus equal to

7(8)do=k (@) Vdo. 3

For values of 7{f)df smaller than unity, the expression
in (3) can be taken to represent the probability that a
given drop will contain a nucleus active in the specified
temperature interval.

Consider now an experiment in which a total of N,
drops are observed and let the number of drops still
unfrozen at the temperature § be N (8). The number of
drops frozen at 6 is then given by No—N (). Upon fur-
ther cooling of the temperature to (§—df), an additional
number dN of the drops may freeze, so that the fraction
of unfrozen drops nucleated within this interval is
dN /N (6). The fraction? dN /N (f) can be looked upon as
the probability of freezing, Pd#, for one of the unfrozen
drops, i.e.,

Pdo=dN/N (6). (4)

2 In freezing experiments both N(6) and 6 decrease with time.
In order to avoid the continuous use of minus signs, dN and d@
have been defined above to be positive quantities, i.e., absolute
values are being used for d¥, AN, d¢ and A#.
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Since the right-hand side of this equation contains
quantities which are observable in an experiment, Pdf
can be determined.

It can be shown that the probability Pdé also repre-
sents the probability of finding a nucleus active between
6 and (9—d#f) in any one of the original number of drops
(Ny). The basis for this assertion is that the chance
allocations of the various nuclei of different activities
into the drops are independent of one another. Thus, the
drops that were observed to freeze at temperatures
warmer than 6 had the same chance for containing
nuclei active between 8 and (§—df) as the other drops
which did not contain nuclei active above 6 and which
therefore remained unfrozen up to that point. Hence,
the empirical probability of freezing from (4), although
derived from observations on the NV unfrozen drops, can
be equated to the expected value for the probability of
containing a nucleus in any one of the Vo drops as given
by (3), so that

' dN/N (0)=Fk(6)Vd, 5)

from which the final expression for the concentration
can be written as

1 av .
k@) =——"— [em™(°C)7']. (6)

The concentration function £(f) is termed the “differen-
tial nucleus concentration” and its graphical represen-
tation is described as a “differential nucleus spectrum:’

The use of infinitesimal temperature decrements df in
the foregoing derivation ensured that no more than one
nucleus could have been responsible for the observed
freezing of a drop in that interval. With the probability
for an active nucleus to be found in a drop over the
interval df being very small, the probability of two or
more nuclei of the same activity occurring in the same
drop becomes negligible. This can be readily seen by an
application of Poisson’s law (Hoel, 1962) from which
the probability p(x) for finding x nuclei of the same
activity in the same drop can be obtained as

p(w)=eu/x), ’ ™

where u=1(6)d0, i.e., the average number of nuclei per
drop. The probabilities of one, two, three, etc., nuclei
of the same activity occurring in a drop are thus pro-

portional to
12 ,u2/2; 1-‘3/63 ey ' (8)

respectively. For an infinitesimal, temperature change
d@ the average number g is also infinitesimal so that
terms with higher powers of u are negligible.

For practical application (6) has to be modified some-
what due to the fact that in an experiment with finite

. 3Roulleau (1957) presented her experimental results by plotting
dN/N as a function of temperature in a way which is very similar
to the differential spectra defined in this paper; however, no
physical interpretation was attached to the quantity d¥/N.
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numbers of drops one has to use temperature intervals
Af which are sufficiently large to yield appreciable
numbers of freezing events, AN, in each interval. Since
the value of u is then not infinitesimal, all the terms in
(8) have to be considered. In other words, the only
statement that can be made in this case is that observa-
tion of the freezing of a drop in a particular temperature
interval is an indication for the presence in that drop of
one or more nuclei all having characteristic temperatures
in that interval. The probability that at least one
nucleus of the same “kind” (in the sense of having
characteristic temperatures within the same interval)
will occur in a drop is given by Poisson’s law as

p(1,2,..)=1-p0)=1—e 9)

where u is now equal to 7(8)Af. Equating this prob-
ability to PA@ from (4) and using (3), it follows that

AN/N () =1—exp[ —k(6)VAG], (10)
from which
kO)=—(1/VADIn[1—-AN/N(6)]. (11)

Eq. (11) is the formula used to calculate £(f) from the
observed values of AN. The term N (§) is readily ob-
tained as

(12)

The volume V is fixed for any given experiment, and
equal temperature decrements are usually used through-
out (this is not a requirement, however). .

3. Cumulative nucleus spectra

The differential nucleus concentration %(§) is the
most useful representation of the nucleus content of a
sample, since it describes the variation of activity with
temperature in a direct fashion. It may be of interest,
however, especially in considering the freezing of a
population of drops upon cooling from OC, to form a
cumulative nucleus concentration K(f), which is an
indication of the numbers of nuclei which are active at
all temperatures warmer than 6 in a unit volume of
water. .

The cumulative concentration K (6) can readily be
derived by integrating (6) over the temperature range
0 to 0C; it thus takes the form

K@) =[nNo—InN(@©)]/V [em™*]  (13)

This equation is also consistent with the finite-difference
form of (11) as can be seen by writing

k(0) =LK (6—A6)—K (6) ]/ A0, (14)

which, upon substitution for K (§) from (13) and by
putting N (6—A8)=N(0)—AN, reduces to (11). The
cumulative spectrum may thus be obtained either
directly from (13) or by summation of the £(6)Af terms.

As can be seen from (13), K'(6) is dependent only on
N(6), so that it may be expected that this quantity
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Fic. 1. Different representations of the experimental results for 144 drops of 0.01 cm?®
volume from a sample of rain. Part (a), upper left, is a histogram, part (b), lower left the
differential spectrum obtained from (11), and part (c), lower right, the cumulative spectrum

calculated from (13).

alone could be used to derive K (8). This can be done, in
fact, by considering N(#)/N, (the fraction of drops
unfrozen at 6) as representing the probability that a
drop contains no nuclei active above 8. Expressing this
relation, with reference to (7), we obtain

N(6)/No=exp[—K (0)V ],
which is equivalent to (13).

(15)

4. Application

As mentioned in the introduction, the most con-
venient experimental procedure for the determination
of the nucleus spectra is the steady cooling of a set of
drops until all the drops freeze. The details of the ex-
perimental procedure have been presented by Vali and
Stansbury (1966). In Fig. 1 the results of a typical ex-
periment are shown for a sample of rain, Part (a) of the
figure is a histogram representation of the numbers of
drops frozen in each 0.27C interval expressed as per-
centages of the 144 drops tested. Parts (b) and (c) show
the corresponding differential and cumulative spectra.
The concentrations were calculated at each 0.27C in-
terval and a three-interval weighted smoothing (%, %,
1) was applied. The curves were then fitted to the points
subjectively. Frequently there are peaks, more or less
pronounced, in the differential nucleus spectra; these
indicate the presence of specific groups of nuclei in the
samples. The general tendency, however, is toward an
exponential increase in concentration with decreasing

temperature. In this respect, these results for freezing
nucleus concentrations in water samples are very similar
to those deduced from cloud-chamber measurements.
The deviations from the simple exponential form are in
general greater for samples which contain nuclei active
at temperatures 2 —15C. On the other hand, singly-
distilled water, which has relatively low concentrations
of nuclei, has a very nearly exponential spectrum with
an exponent typical of cloud-chamber measurements
for atmospheric nuclei (a factor of 10 increase in concen-
tration for a 4C decrease in temperature).

The question of statistical validity arises with respect
to the calculated concentrations, especially with respect
to the scatter which makes the resolution of the peaks
in the differential spectra uncertain. Due to the fact
that each point along the curve is based on the observed
freezing of a different number of drops, the statistical
significance of each point is different. This rules out the
application of standard methods. The problem was
therefore approached by Monte Carlo simulation of the
experiments on a computer. Consecutive sets of num-
bers were assigned to each successive temperature
interval in proportion to the assumed concentrations
for the intervals. Random numbers generated in the
computer were then compared to the assigned numbers
and the temperatures to which those numbers belenged
were taken as the freezing temperatures of drops. The
spectra were calculated from (11) and (13) and compared
to the input concentrations. Fig. 2 shows the results of
such a simulation. The numbers of drops per sample,
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Fic. 2. Differential nucleus spectra for computer-simulated experiments. The “input” curve
represents the assumed concentration in a sample from which Ny drops were taken for the

simulated experiment.

No,Twere varied for an input spectrum having relatively
fine detail. As can be seen from the figure, the main fea-
tures are already reproduced for N, as small as 72, but
even at No=23000 there is some uncertainty in the defini-
tion of the small dip in concentration at —10C. It may
also be noted that the scatter of points is greater over
portions of the spectrum which have smaller negative
slopes and that the definition is best over the steep
portions of the spectrum.

The probable errors associated with a spectrum for
an experiment with Vo= 150 can be estimated from Fig.
3 which shows the envelopes drawn to ten spectra ob-
tained from ten independent simulations for the same
experiment. The maximum discrepancies in concentra-
tions appear at the warm temperature end of the spec-
trum, whereas the maximum range in temperatures for
a given concentration is in the middle part of the spec-
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F1c. 3. Envelopes of the spectra from ten simulated experiments
with No=150. This represents a rough estimate of the error-band
associated with such a spectrum (due to the small number of
fxperi)ments no precise confidence values were attached to these
imits).

trum. The error band associated with a nucleus spec-
trum is thus seen to be dependent on the shape of the
spectrum. In general, differential spectra are accurate
to within approximately a factor of 2 over most of the
range covered, with uncertainties of perhaps factors of
4 toward the ends of the spectra. The cumulative
spectra tend to show somewhat less scatter. The figures
quoted above are for spectra derived from experiments
with N o= 200; accuracies can be improved by increasing
the numbers of drops tested per sample.

Although the simulated experiments can serve to pro-
vide a rough indication of the degree of confidence that
can be placed in the calculated concentrations, a more
thorough and rigorous treatment of the statistical
reliability of the spectra remains to be developed.

5. Volume dependence

Many previous experiments on the freezing of water
drops have yielded logarithmic relations between the
mean freezing temperatures and the volumes of the
drops [see summary by Fletcher (1962)7]. It is therefore
worthwhile to examine the volume dependence that
follows from the theory outlined in this paper.

It can be readily seen from applications of (5) to
some simple forms of £(6) that the mean freezing tem-
peratures of N, drops of volume V depend on V in
different ways for the different forms of 2(f). A general
volume-temperature relation therefore cannot be given.

The special case, when %(0) is of the form

(16)

where 4 and B are constants, deserves consideration.
For the distribution that follows from (16), Stansbury
(1961) has shown the mean freezing temperature § to be

given by
(17)

k(6)=A exp(—BS),

f=In(4V/B)4+1'(1)/B,
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with I'’ denoting the first derivative of the gamma func-
tion [numerically, T'(1)=0.5772]]. In this case, then,
there is a logarithmic dependence of 6 on V. Since many
spectra tend toward an exponential form such as (16),
the measured dependence of 8 on V can be expected to
be nearly logarithmic for most cases (in accordance with
earlier results); a strict logarithmic relation holds, how-
ever, only in the special case given by (16).

The nucleus spectra given by (6) and (13) represent
the nucleus content per unit volume and they should
therefore be independent of the drop size used in the
experiment from which the spectra were derived. Verifi-
cation of this statement, by experiments using drops of
different sizes, is, in fact, a good check on the reasoning
that led to (6) and (13), as well as on the acceptability
of the experimental procedures. Effects proportional to
the area of contact between drops and the supporting
surface, for example, would negate the independence of
derived concentrations from drop volume. Fig. 4 shows
an example of differential concentrations derived from
experiments with different sizes of drops; the consis-
tency among these three curves appears quite satisfac-
tory.* It is also evident from Fig. 4 that the calculated
concentrations cover different ranges for the three sets
of experiments, with the overlap existing over portions
of the spectra only. This is a general consequence of (6)
and of (13) according to which V and N, determine
what range of values will be covered by k(f) and K (8).
With larger drops, fewer nuclei per cubic centimeter of
water will suffice to freeze all the drops in the sample;
thus, information is obtained from the experiment for
relatively low concentrations. Conversely, with drops
of smaller volume nuclei of greater concentrations are
examined. The influence of N, is similar in that the
larger the number of drops tested, the greater the chance
that a rare (low concentration) nucleus of high activity
will be detected. For example, differential concentra-
tions of 107~10° cm™® (°C)~! can be measured by using
100-300 drops of 1072 cm?® volume. As an alternative to
changing V or N, for increasing the ranges of the spec-
tra, the sample can be diluted with water of much
lower nucleus content (Vali, 1968); this is a very con-
venient method but its application is limited to mea-
surements at temperatures 22 —20C due to the unavail-
ability of nucleus-free water.

4 The same analysis technique has been applied to the measure-
ments of Rau (1953) which extended to a much larger range of
drop volumes. The histograms for ten sets of drops (Fig. 1in Rau’s
paper) indicated gradual shifting of peaks from warm tempera-
tures toward colder temperatures as the sizes of the drops were
decreased. Qualitatively, this behavior is expected from the further
partitioning of nuclei into smaller and smaller drops. However, the
calculated concentrations of nuclei, using (11), were found not to
be constant for the different experiments but to increase for de-
creasing drop sizes, contrary to the arguments of this paper. Thus,
the qualitative reasonableness of Rau’s results cannot be carried
over into a quantitative statement, indicating perhaps that the
same sample of water was not used in all of the experiments or
that some factor other than nucleation by suspended impurities
entered the experiments.
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6. Summary

A method has been presented for the quantitative
evaluation of drop freezing experiments. It was shown
that the specific nucleus contents of samples can be
determined and be described by the differential nucleus
spectra (6). The freezing behavior of a population of
drops can be predicted by simple calculations (Vali,
1968) based on the use of the cumulative spectrum (13).
These spectra are independent of the particular drop
sizes used in the experiments and are therefore con-
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F16. 4. Experimental results for three sets of runs with different
sizes of drops, all from the same sample of a melted hailstone:
A, 725 drops of 0.04 cm? each; B, 720 drops of 0.01 ¢cm? each;
and C, 704 drops of 0.0025 cm® each. The upper diagram is a
histogram representation of the numbers of drops frozen per 0.27C
interval, the lower diagram the corresponding spectra derived from

(11).
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sidered to be better representations of experimental re-
sults than the frequency distributions of freezing events
which are in common use at present.

From the point of view of physical significance, drop
freezing experiments of the kind analyzed in this paper
are the most convenient and at the same time the most
rewarding ways to determine the ‘““freezability”’ of
water or of any other substance, and to quantify many
of the characteristics of heterogeneous freezing nuclei.
For atmospheric research, this technique offers a way to
unambiguously identify both natural and artificial
freezing nuclei, with the attendent advantage of equal
sensitivity of detection at all temperatures below the
melting point. Since freezing induced by particulates
within a water drop is not the only mode of ice forma-
tion in the atmosphere, it appears that other types of
measurements, used in conjunction with these freezing
nucleus measurements, will be necessary to obtain a
complete measure for ice-forming potential in the
atmosphere.
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APPENDIX

Calculation of Spectra for Polydisperse
Population of Drops

If a drop freezing experiment is performed in which
drops of various sizes are being used, it is expected, on
the average, that the larger drops will freeze at warmer
temperatures than the smaller drops. With this addi-
tional complication there appear to be two possible
approaches for the derivation of nucleus spectra from
experimental data.

Provided that the dispersion in drop sizes is relatively
small and that all the drops are small compared to the
total volume tested, the only modification necessary in
(6) is to replace VN (6) by V(6), the volume of water
which is unfrozen at 6. In this case drops are considered
equal, irrespective of their sizes, in determining dNV;
the greater chance of freezing for larger drops is not
neglected, however, as V(0) is diminished by a larger
amount due to the freezing of a large drop than it would
be for a smaller drop.

An adaptation of (11) can be made by considering
the following expression as the best estimate for the
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probability of freezing in place of (4):
AN V(6)/N®)
A= " (18a)
N@®) AV/AN
or
PA=TAN/N@G) LV 6)/AV], (18b)

where the second factor in (18a) is a correction for the
volume effect in the form of the ratio of average un-
frozen drop size to the average size of the drops freezing
in Af. The average number of nuclei per drop can be

written for the unfrozen drops, whose average volume
is V(6)/N (), as

7 (0)A0=Fk (@) A0V (6)/N (6). (19)
Hence, by analogy with (10), we have
AN Prv ) —k(0)A8V (6)
—_ ] |=1—exp| ————
[N(o)] [ AV] ¢ p[ NE) ] 20

from which %(f) can be obtained.

An alternate approach which may be used is to
classify the drops of different radii 7; into groups with
nominal volumes V'(r1), V (r2), etc., and to treat each
group separately, finding a %(8)-value from each group
and applying a volume-weighted averaging.

The best way to derive K (§) from an experiment with
polydisperse drops appears to be by summation of the
k(6) Af-values.
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