
Prob08   ATSC5011    Köhler Theory  

 

Köhler theory describes saturation ( KohlerS ) over a curved solution droplet. Since atmospheric droplets 

are curved, and since they form on aerosol particles that contain salt (the cloud condensation nuclei or CCN), 

these affects need to be accounted for. Köhler theory does that. 

 

Assignment –  

 

Consider two aerosol particles.  They have different dry radii and both are composed of sodium chloride.  

The temperature is 278.15 K.   

 

1) Creat the graphs shown below and make sure that you plot the graphs exactly as shown. Turn in the IDL code 

that generates the Köhler curves for the two particle dry radii.  I do not want to see declarations of the defined 

system variables, the loop that makes the solution droplet radius, or the graphic plotting code. 

2) With pencil and paper (no IDL), evaluate the haze particle radii (there are two, one for the dr = 0.02 m and 

one for the dr = 0.06 m) at KohlerS 0.99.  An approximation is to assume the curvature term is small 

relative to the solute term. Use that approximation to evaluate the haze particle radii.  Provide a few sentences 

about how you did this. Don’t forget to mention the approximation. 

3) For dr = 0.02 m, and using IDL Newton, evaluate the haze particle radius at KohlerS 0.99.   For this 

calculation no approximation is needed. Turn in your user-defined function and the code that calls the user-

defined function though Newton.  Are you using a “common block” to communicate the “state” information to 

the user-defined function?   This can be accomplished in less than 20 lines of IDL code. 

 







Derivation of the Köhler Equation 

Consider a solution containing water and dissolved salt. At this point we are considering a bulk solution; 

i.e., something you can create in your kitchen by adding salt to a volume of liquid water. The solution has two 

components; we will use the subscript “1” to indicate the solvent (water) and the subscript “2” to indicate the 

salt. 

Water activity ( 1a ) is defined as the ratio of the vapor pressure over the solution divided by the vapor 

pressure over pure water (i.e.,  ss eea /'
1  ).  According to Raoult’s Law, water activity can be expressed in 

terms of the mole amounts of water and salt ( 1n  and 2n , respectively), and the vant Hoff factor ( i ).     
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Equation (1) arranges to Equation (2) 
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Now consider an aerosol particle that is spherical and composed of pure sodium chloride.  If the particle is 

exposed to water vapor close to saturation, with S < 1, the particle deliquesces and becomes a solution droplet. 

Assume that all the salt is dissolved and the water and salt contribute to the volume of the solution droplet as if 

they were separate components.  The mole amount of water within the solution droplet is 
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Here dr  is the radius of the dry salt particle, 1M  is molecular weight of water, and r  is the radius of the 

solution droplet. The mole amount of salt in the solution droplet is 
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Combining (2), (3) and (4), the water activity can be described in terms of the vant Hoff factor, the two radii, 

and pure-component properties 
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Assuming the second term in the denominator of Equation 5 is small relative one, and making a Taylor series 

expansion, Equation (5) simplifies to Equation (6) 
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Saturation over a solution droplet ( KohlerS ) can be approximated as the product of water activity and 

the Kelvin effect. For the latter we assume that the vapor-liquid surface energy ( ) is not altered by the 

presence of dissolved salt. With these assumptions, KohlerS  becomes 
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For most applications relevant to atmospheric science, the Kelvin term can be linearized.  In that limit the 

saturation over a curved solution droplet is 
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After multiplying out the two terms on the right side of Equation (8), and examining the result, we see that one 

of the four terms is small in comparison to the other three. Neglecting that smallest term, the right side of 

Equation (8) becomes 
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Also, in Equation 9, we neglect 
3
d

r  relative to the 3r  
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Finally, we define two parameters )/(2 TRa v    and )/( 2
3
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latter is proportional to the amount of salt (cf. Equation 4). With these definitions the Köhler Equation becomes  
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The Köhler Equation describes saturation over a curved solution droplet. Solution droplets are classified 

as “haze particle” or as “cloud droplet” by comparing saturation at the maximum of the Köhler curve to the 

ambient saturation ( S ). 

 

max,KohlerSS   

Haze Particle 

“Unactivated”             

      

 

max,KohlerSS   

Cloud Droplet  

“Activated” 

 

Note: In an upcoming lecture, we will see that S  is time-dependent. The time-dependent theory we 

develop has S increasing to a maximum, with S slightly greater than one, a few tens of meters above the 

lifted condensation level. 

 

 

We note that there are three terms on the rhs of the Köhler Equation (Equation 11). The second is the 

curvature term, this enhances saturation for the same reason it enhances saturation over a curved surface of pure 

water (Kelvin effect). The third is the solute term. This lowers the saturation for the same reason that the 

presence of solute lowers the vapor pressure over a flat solution.    

 

 


