; ;jeff snider, univeristy of wyoming, march 2006 ; ;The measurement of c_twomey is at a state which has a specific volume = specific_volume_meas ; pro twomey, w_local, tk_local, p_local, r_n_twomey ; common constants, gascon, rho_h2o, mw_nh42so4, rho_nh42so4, sigma_0, $ sigma_t, dsigmadmolality_nh42so4, dsigmadmolality_nacl, mw_h2o, $ mw_nacl, rho_nacl, tkmelt, c_nh42so4, a_nh42so4, c_nacl, a_nacl, $ cp_air_o, cp_h2o_o, mw_air, gravity, p0, alpha, beta_local, $ gascon_h2o, cw_h2o_o, tk_o, lv_o, ew_o, tk_aerosol, salt_type, $ epsilon, c_twomey, k_twomey, aerosol_type, right_tail, $ gascon_air, tc_base, tk_base, p_base, h_start, hmax, $ r0, dt, rmin, rmax, coef, epsilon_aerosol, specific_volume_meas, $ nchan, mw_salt, rho_salt, a_salt, c_salt, specific_volume_base, $ dsigmadmolality_salt, rho_insoluble, volume_insoluble_to_soluble, $ mixrat_tot_1,r_1,geo_sigma_1,mixrat_tot_2,r_2,geo_sigma_2, $ tk_start,p_start,sratio_start,mixrat_tot_3,r_3,geo_sigma_3 ; ew = ew_jeff(tk_local) r_v = epsilon * ew / (p_local - ew) cp_tot = cp_air_o + r_v*cp_h2o_o lv_t = lv_o + (cw_h2o_o - cp_h2o_o)*(tk_o - tk_local) diffusivity = dif_h2o(p_local,tk_local) conductivity = cond_air(tk_local-tkmelt) q1_johnson = lv_t*gravity/(cp_air_o*gascon_h2o*tk_local^2.) - gravity/(gascon_air*tk_local) q2_johnson = p_local/(epsilon*ew) + lv_t^2./(cp_air_o*gascon_h2o*tk_local^2.) e_johnson = ew*conductivity*diffusivity*gascon_h2o*tk_local^2. / (rho_h2o*(conductivity*gascon_h2o^2.*tk_local^3.+diffusivity*lv_t^2.*ew)) alpha_johnson = 100.^k_twomey*c_twomey*specific_volume_meas zeta_johnson = (0.159/(rho_h2o*q2_johnson))*(q1_johnson/e_johnson)^(3./2.) r_n_twomey = (alpha_johnson)^(2./(k_twomey+2.))*(zeta_johnson*w_local^(3./2.) / $ (k_twomey*beta(k_twomey/2.,1.5)))^(k_twomey/(k_twomey+2.)) ; end