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Ekman Flow: 

Assume that the Coriolis force and friction force are the dominant terms in the horizontal component equations 

of motion.  Also assume that f  and zA  are constants.  With the first two assumptions, here are the relevant 

horizontal equations of motion: 
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Employing a trick similar to one used to solve for the Inertial Flow, we multiply the bottom equation by i , add 

the two equations, obtain the sum, multiply the left-hand term by 2i  and the right-hand term by -1. 
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Rearranging: 
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Here we contrast the mathematics of Inertial and Ekman Flow: 

 

Inertial Flow:   Ekman Flow: 
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First order ordinary differential equation   Second order ordinary differential equation 

 

Independent variable is “ t ”   Independent variable is “ z ” 
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oh  is “yet-to-be determined”   1C  and 2C  are “yet-to-be determined” 
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There is an algebraic trick that we need to deal with: 
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Hence, for the “ B” in the Ekman solution  
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Here is result: 
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Boundary Condition #1– 
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i.e., no Ekman flow at large depth 

 

Hence,  
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For the proceeding statement to be “true”, the 2C  coefficient must equal to zero, hence 
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The solution to the differential equation is therefore: 
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Note the value of the derivative, evaluated at z = 0 
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Boundary Condition #2 – 

 

This boundary condition is determined by the interaction of the wind with the surface water flow.   The 

interaction is expressed in terms of the surface stress vector.  The surface stress vector has the following 

components 
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The above information can be formulated as a vector with imaginary and real components.  This is done by 

multiplying the bottom equation by i  and summing the two equations, hence 
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Combining (8) and (9) 
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Combining (6) and (10) we have    
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The above is simplified with the identity, 2)i1)(i1(   
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Note: The parameters B  (Equation 6) and 1C  (Equation 11) have both “real” and “imaginary” components 
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For convenience, define a constant with no imaginary component: 
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Combining (7), (11) and (12) 
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As in the Inertial Flow problem, we now apply Euler’s Theorem, 
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Combining (13) and (14), 
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We have solved for the components of the Ekman velocity! 

 

Note: The components are damped (with depth) and oscillatory (also with depth) 

 

Caution:  We are talking about horizontal flows and forces…the vertical component of the flow is not described 

by these equations.  

 

However, we need to acknowledge that continents interact with the Ekman Flow.   This is shown two pages 

down.    

 

We conclude that Ekman Flow is the driver of upwelling within eastern boundary currents.
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Summary of Ekman flow: 

 

1. Ekman flow is directed, or “forced”, by the wind.   This interaction is apparent in the nature of the solution 

imposed by boundary condition 2 

 

2. Stronger wind stress (i.e., larger xT  and/or larger yT ) implies stronger Ekman flow 

 

3. In the NH, the depth-integrated horizontal mass transport due to Ekman is ~90 
o
 to the right of the surface 

wind (Note: Figures 6.9 and 6.12 from Chapter 6 of Knauss) 

 

4.  One can think of the reciprocal of the dampening factor α  as a characteristic depth (i.e., 
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5. Depending on latitude (this affects f ), and turbulent intensity (proportional to zA ), the Ekman phenomenon 

occurs over a depth interval of tens to hundreds of meters   
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6. At a specified depth, the speed of the Ekman flow is smaller when the water column is either turbulent (i.e., 

zA  is large, implying weak stability or large wind speeds) or tropical (small f ) . 

 

7. Ekman flow also produces upwelling or downwelling at locations away from eastern boundaries.   From 

Figure 6.12 (Knauss) we have the flowing conclusions about vertical motion within the Ekman layer 

 

 

 

 

 

 

 

 

 NH SH 

Cyclonic shear Divergence/upwelling Convergence/downwelling 

Anticyclonic shear Convergence/downwelling Divergence/upwelling 

Cyclonic Circulation Divergence/upwelling Convergence/downwelling 

Anticyclonic Circulation Convergence/downwelling Divergence/upwelling 
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