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1) Differentiate the following functions (write f’(x)): 

a) f(x) = x 

b) f(x) = x2 

c) f(x) = ln(x) 

d) f(x) = exp(x) 

e) f(x) = sin(x) 

f) f(x) = 1/x 

2) Integrate the following functions (write  dx)x(f ): 

a) f(x) = x 

b) f(x) = x2 

c) f(x) = ln(x) 

d) f(x) = exp(x) 

e) f(x) = sin(x) 

f) f(x) = 1/x 

3) A function whose derivative is a constant multiple of itself must be? 

a) periodic 

b) linear 

c) exponential 

d) quadratic 

e) logarithmic 

4) Explain your answer to problem #3 by examining your answers to problem #1.   For example, the 

derivative of f(x) = x2 is 2x, and that is not a constant multiplied by the function f(x).  Hence, f(x) = x2 is 

not a correct answer to problem #3.   Hence, a quadratic function is not a correct answer to problem #3. 
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Power Function: 
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Logarithm: 
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Integration requires a recognition of differentials.   Almost all of the problems we work deal with are 

definite integrals: 

 BA
B
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xFdxxf )()(   

In the previous equation, we know the form of the function )(xf  and we are searching for the function 

)(xF .   The function )(xF  – the antiderivative – has the property that its derivative is equal to the 

integrand.    

In the previous equation, the “  ” notation is shorthand notation for this: evaluate the antiderivative at 

its upper limit (B) and subtract from that the antiderivative evaluated at the lower limit (A). 
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We know this (a function whose derivative is a constant multiple of itself): 

fkf   

Formally 
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Rearranging….because we are going to integrate and thus derive the form of f  
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Integrating both sides 
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Antiderivatives 
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Algebra 
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Note: fkf   

 


