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Attenuation of Radiant Energy by Absorption 

 

The basis for this is a differential equation (Beer’s Law), developed by the August Beer 

(1825-1863), a German physicist and mathematician. 

 

We imagine a radiant flux, represented by F , attenuated by a differential amount ( dF ) 

during passage through matter along a differential path length dx .    

 

dx
F

dF
   

 

Application of Beer’s Law to the atmosphere necessitates that we adopt “ z ” as the 

coordinate, that the absorber’s density be allowed to vary vertically, and that an 

absorber’s wavelength-dependent crossection (  ) be accounted for. Adopting these 

requirements, and using the atmospheric flux distribution function (  ), in place of F  

(Jacob, Chapter 7), we get Equation 1. 
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Equation 1 envisions a flux propagating through the atmosphere, perpendicular to the 

Earth’s surface.  We note that dz  is negative ( dz <0) for a radiant flux propagating 

downward into the atmosphere. 

 

On the next page we will be integrating Equation 1.   That integration requires an 

integration limit.  From consideration Planck’s Radiation Law and the Sun-Earth orbital 

geometry, we can formulate the upper integration limit.   It is commonly known as the 

extraterrestrial flux.  We symbolize the extraterrestrial flux as )( . 

 






























1
kTλ

hc
expλ

hcπ2

d

R
)(φ

s

5

2

2

2
s

λ  

 



 4 

Attenuation Radiant Energy by Absorption - Continued 

 

In integral form, Beer’s Law (Equation 1) looks like this 
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In the previous equation we have assumed that the crossection does not vary with 

altitude.   With integration, we have this 

 

 )(exp)()( zz            (2a) 

 

where the quantity 

 


z

dzzz )()(            (2b) 

 

is defined as atmosphere’s optical depth.   We note, from Equation 2b, that the optical 

depth is the product of absorber crossection and absorber column mass.   

 

If we parameterize the absorber’s density as )/exp()0()( hzz   , we derive optical 

depth as an altitude-dependent function 

 

)/exp()0()( hzhz    .       (3)    
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 Summarizing: 

 

1) The shortwave (solar) flux is attenuated by absorption occurring within the Earth’s 

atmosphere.  For the cloud-free atmosphere (we have ignored clouds here), the absorption 

occurs within a few, relatively narrow, wavelength intervals. 

2) Both oxygen and ozone absorb solar ultraviolet photons and thus attenuate the 

shortwave flux at ultraviolet wavelengths; water vapor attenuates solar photons in the 

near infrared. 

3) Attenuation by absorption, in part, explains why the shortwave flux, at the surface, is 

diminished relative to the extraterrestrial flux (see Figure 7-7 on the next page). 

4) Beer’s Law (Equation 1) is an example of a physical law, expressed in a differential 

form.  The integral form of Beer’s Law (Equation 2a-2b) describes altitude- and 

wavelength-dependent attenuation due to gaseous absorption. 

5) Equations 2a-2b represent a model for absorption by atmospheric gases. 

6) Crossection (  ) is a wavelength-dependent property of the absorbing gas.  

Crossection can be evaluated empirically (spectroscopy), or it can be developed from 

theory.  The latter is one of the topics addressed by quantum mechanics.  

7) In this document, crossection (  ) has dimension square meter per kilogram.  Hence, 

optical depth is dimensionless.  I.e., crossection times column mass is dimensionless.    

8) Optical depth is positive definite; i.e., 0 .   Optical depth’s lower-limit ( 0 ) 

corresponds to negligible crossection or negligible column mass. 

9) Optical depth values equal to 1, 2, 3... correspond to altitudes where the radiant flux is 

attenuated by the factor 1e ,  2e , 3e , etc.   (Calculator note: 1e 0.37; 2e 0.14; 

1e 0.05). 
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The Vertical Derivative of the Radiant Flux 

 

In some applications, for example studies of the stratospheric energy budget and 

stratospheric chemistry, we are interested in how the radiant flux varies with altitude.  

Building on what we have developed, particularly Equation 2a, the flux’s variation with 

altitude can be formulated as a derivative 
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By applying the Chain Rule, to the exponential form of Equation 2a, we can formulate 

the vertical derivative as 
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Now, if we substitute Equation 2b for the optical depth, we have the following 
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Assuming that the crossection is independent of altitude, and according to the 

Fundamental Theorem (calculus), the last equation simplifies to 
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The Vertical Derivative of the Radiant Flux - Continued 

 

From Equation 4, we see that the flux derivative ( dz/φd λ ) is a convolution of two 

opposing effects.  The first is the tendency for the flux to decrease with decreasing 

altitude (absorption) and the second is the decrease of gas density with increasing 

altitude (hydrostatics). 

 

A plot of dz/φd λ  versus altitude is provided (Figure D).  This formulation of 

dz/φd λ uses Equation 4, with Equations 2a and 3 providing the functional form of 

)z(φλ  (plotted in Figure B), density parameterized as )/exp()0()( hzz    (plotted 

in Figure A), and O2’s crossection at  0.2 m (in the ultraviolet).   The plot shows a 

maximum, so our concept of two opposing effects (absorption and hydrostatics) is sound. 

 

In the following discussion of Figure D, we will refer to altitudes smaller than the 

dz/φd λ  maximum (“small altitude”), and to altitudes larger than the dzd /  maximum 

(“large altitude”). 

 

We attribute the decrease of dz/φd λ , at small altitude, to the attenuation of the flux 

(absorption), and we attribute the decrease of dz/φd λ , at large altitude, to the decrease 

of mass density with increasing altitude (hydrostatics). 
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What’s so Important about Optical Depth Equal to One? 

 

The plots (Figures A, B, C and especially D) demonstrate, for a particular case (O2 

absorbing ultraviolet photons), that dz/φd λ  maximizes at an optical depth equal to one 

( 1 ).  We can use that result to establish a general relationship between altitude and 

absorber properties (crossection, density and scale height). 

 

We define z  as the altitude of the dzd /  maximum.  At the maximum we have this    
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From Equation 4, we have, 
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Assuming, as before, that the crossection is independent of altitude, we have 
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According to the product rule (calculus), we have 
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What’s so Important about Optical Depth Equal to One? - Continued 

 

There are two derivatives in Equation 5.  One of those follow from our density 

parameterization ( )/exp()0()( hzz   ) 
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and the other comes from Equation 4 
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Plugging the derivatives into Equation 5, we have 
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Canceling common factors, we have 
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Substituting the density parameterization into the previous equation, we have 
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h
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Solving for the altitude that the derivative maximizes, we get an expression for the 

altitude of the dzd /  maximum. 

 

 hhz  )0(ln  .        (6) 

 

Substitution of Equation 6 into Equation 3 establishes that dz/φd λ  is a maximum at the 

altitude ( z ) that the optical depth is equal to one.  It follows that what we see in Figures 

C and D, with dz/φd λ  maximizing at 1 , is a general phenomenon. 


