1) Differentiate the following functions (write $f^{\prime}(x)$):
a) $f(x)=x$
b) $f(x)=x^{2}$
c) $f(x)=\ln (x)$
d) $f(x)=\exp (x)$
e) $f(x)=\sin (x)$
f) $f(x)=1 / x$
2) Integrate the following functions (write $\int f(x) d x$):
a) $f(x)=x$
b) $f(x)=x^{2}$
c) $f(x)=\ln (x)$
d) $f(x)=\exp (x)$
e) $f(x)=\sin (x)$
f) $f(x)=1 / x$
3) A function whose derivative is a constant multiple of itself must be?
a) periodic
b) linear
c) exponential
d) quadratic
e) logarithmic
4) Explain your answer to problem \#3 by examining your answers to problem \#1. For example, the derivative of $f(x)=x^{2}$ is $2 x$, and that is not a constant multiplied by the function $f(x)$. Hence, $f(x)=x^{2}$ is not a correct answer to problem \#3. Hence, a quadratic function is not a correct answer to problem \#3.

Power Function:
$\frac{d\left(x^{n}\right)}{d x}=n \cdot x^{n-1}$

Exponential function:
$\frac{d(\exp (x))}{d x}=\exp (x)$

Periodic Function:
$\frac{d(\sin (x))}{d x}=\cos (x)$
$\frac{d(\cos (x))}{d x}=-\sin (x)$

Logarithm:
$\frac{d(\ln (x))}{d x}=\frac{1}{x}$

Integration requires an understanding of differentiation. Almost all of the problems we work deal with are definite integrals:
$\int_{A}^{B} f(x) d x=[F(x)]_{A}^{B}$
On the quiz (problem 2) we know the form of the function $f(x)$ and we are searching for the function $F(x)$. The function $F(x)$ - the antiderivative - has the property that its derivative is equal to the integrand.

In the previous equation, the " $[$]" notation is shorthand notation this: evaluate the antiderivative at its upper limit (B) and subtract from that the antiderivative evaluated at the lower limit (A).

$$
\begin{aligned}
& \int_{A}^{B} x d x=\left[\frac{1}{2} \cdot x^{2}\right]_{A}^{B}=\frac{1}{2} \cdot\left(B^{2}-A^{2}\right) \\
& \int_{A}^{B} x^{2} d x=\left[\frac{1}{3} \cdot x^{3}\right]_{A}^{B}=\frac{1}{3} \cdot\left(B^{3}-A^{3}\right) \\
& \int_{A}^{B} \exp (x) d x=[\exp (x)]_{A}^{B}=\exp (B)-\exp (A) \\
& \int_{A}^{B} \sin (x) d x=[-\cos (x)]_{A}^{B}=-(\cos (B)-\cos (A)) \\
& A \\
& \int_{A}^{B} \frac{1}{x} d x=[\ln (x)]_{A}^{B}=\ln (B)-\ln (A)
\end{aligned}
$$

We know this (a function whose derivative is a constant multiple of itself):
$f^{\prime}=k \cdot f$
Formally
$\frac{d f}{d x}=k \cdot f$
Rearranging.....because we are going to integrate and thus derive the form of f
$\frac{1}{f} \cdot d f=k \cdot d x$
Integrating both sides
$\int_{f_{O}}^{f} \frac{1}{f} \cdot d f=k \int_{x_{O}}^{x}(1) \cdot d x$
Antiderivatives
$[\ln (f)]_{f_{o}}^{f}=k[x]_{x_{o}}^{x}$

Algebra
$\ln (f)-\ln \left(f_{o}\right)=k\left(x-x_{o}\right)$
$\ln \left(\frac{f}{f_{o}}\right)=k\left(x-x_{o}\right)$
$\frac{f}{f_{o}}=\exp \left(k\left(x-x_{o}\right)\right)$
$f(x)=f_{o} \cdot \exp \left(k\left(x-x_{o}\right)\right)$

Note: $f^{\prime}=k \cdot f$

