

Atmospheric Research xx (2003) xxx-xxx

ATMOSPHERIC RESEARCH

1

2

3

4

 $\frac{5}{6}$

8

20

21

22

www.elsevier.com/locate/atmos

Identifying drizzle within marine stratus with W-band radar reflectivity

Jingyun Wang^a, Bart Geerts^{b,*}

^a Department of Geography, Boston University, Boston, MA, USA ^b Department of Atmospheric Science, University of Wyoming, Laramie, WY, 82071, USA

Received 24 March 2003; received in revised form 10 July 2003; accepted 5 August 2003

Abstract

Airborne cloud radar and cloud microphysical data, collected in summertime stratus clouds off 9 the Oregon coast, are analyzed to obtain an empirical threshold radar reflectivity above which drizzle 10 can be expected in warm marine stratus. Such clouds, which are prevalent over the eastern 11 subtropical oceans, have a profound impact on global climate. 12This study finds that the threshold reflectivity for drizzle is a strong function of height within the 13cloud layer. Both radar reflectivities and calculated reflectivities (based on measured droplet spectra) 14 indicate that the threshold is most crisply defined in the lower half of the stratus cloud deck. The use 15of the threshold reflectivity profile to flag drizzle is illustrated by examining the dependency of radar 16reflectivity on cloud water content. Such dependency is non-existent in marine stratus in general, but 17a clear relationship emerges when drizzle cases are excluded. 18 © 2003 Published by Elsevier B.V. 19

Keywords: Marine stratus; Drizzle; Cloud radar; Radar reflectivity

1. Introduction

Clouds are known to have a profound impact on global climate, yet many questions 25 remain regarding feedback mechanisms linking clouds to climate. Much of the uncertainty 26 about the magnitude of global warming hinges on the cloud-climate feedback question. In 27 this context a cloud-probing satellite, called CloudSat, is being prepared for launch in 2004 28 (Stephens et al., 2002). CloudSat will be the first satellite to carry a 95-GHz Cloud 29

0169-8095/\$ - see front matter @ 2003 Published by Elsevier B.V. doi:10.1016/j.atmosres.2003.08.001

^{*} Corresponding author.

E-mail address: geerts@uwyo.edu (B. Geerts).

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

Profiling Radar (CPR). Vertical profiles of cloud properties obtained by the CPR on the
global scale, combined with passive microwave data from sister satellites, will fill a critical
gap in our understanding of cloud-climate feedbacks.30
31
32

The key strength of a 95-GHz (3 mm) radar is its cloud profiling capability, but radar 33 reflectivity is not a measure of drop size distribution, and therefore it is not a direct 34measure of cloud radiative properties such as effective radius or liquid water content 35(LWC). We use an airborne 95 GHz radar, the Wyoming Cloud Radar (WCR). Essential in 36 the interpretation of radar reflectivity profiles is the ability to place these profiles in the 37 context of cloud characteristics as measured by probes on board the aircraft. The focus of 38 this paper is on marine stratus clouds, which are ubiquitous over the eastern subtropical 39ocean basins. Their albedo contrasts against that of the underlying ocean, therefore they 40may have an important impact on global climate (e.g. Arking, 1991). The CPR vertical 41 resolution (500 m) sometimes exceeds the depth of marine stratus, therefore thick marine 42stratus will be smeared out, and thin marine stratus may remain undetected (Baedi et al., 43 2002). 44

The interpretation of radar reflectivity is ambiguous because both the droplet number 45concentration and size contribute to the signal. For a 3-mm radar, cloud droplets and even 46most drizzle drops behave as Rayleigh scatterers. Such scattering is proportional to the 47sixth moment of particle size distribution. Therefore radar reflectivity is largely affected by 48the size of the largest droplets in a resolution volume. Marine stratus often produces 49drizzle, especially at night (Stevens et al., 2003), therefore drizzle may dominate the 50reflectivity of marine stratus. Drizzle is defined in this study as having a diameter of at 51least 50 µm, consistent with definitions elsewhere (Frisch et al., 1995; Hudson and Yum, 521997; Miles et al., 2000). Fox and Illingworth (1997a) argued that drizzle can increase the 53radar return by 10-20 dBZ above the echo due to cloud droplets in extensive marine 54stratocumulus deeper than 200 m. Typical concentrations of cloud droplets in marine 55stratus produce a reflectivity of about -18 dBZ, and typical drizzle amounts increase this 56value to about -5 dBZ, assuming Rayleigh scattering (Frisch et al., 1995). 57

Due to its low number concentration, drizzle has a negligible effect on cloud LWC and 58on cloud effective radius. Therefore, radar reflectivity cannot be used to characterize the 59LWC nor the radiative properties of cloud if drizzle is present. Much work has been done 60on the interpretation of cloud physical parameters from radar reflectivity measurements in 61the past few years (Sauvageot and Omar, 1987; Clothiaux et al., 1995; Frisch et al., 1995; 62 Sassen and Liao, 1996; Fox and Illingworth, 1997b; Löhnert et al., 2001). Both theoretical 63 and empirical relationships between radar reflectivity and other cloud parameters, such as 64LWC, can be found in literature, but these relationships fail if drizzle is present. Therefore 65 the ability to flag drizzle presence in marine stratus is useful. 66

Given its sensitivity to large droplets, the radar reflectivity itself can be used to identify drizzly regions. Sauvageot and Omar (1987) and Löhnert et al. (2001) used -15 dBZ as the lower reflectivity limit to exclude drizzle-sized particles in their study on the relationship between LWC and radar reflectivity. Reflectivity values for warm-season rol land-based stratus are often contaminated by insects, adding uncertainty to this method. 71

Another radar parameter that can discriminate between cloud and drizzle echoes is the 72 Doppler spectrum, for a vertically pointing radar beam (Babb and Albrecht, 1995; Fox and 73 Illingworth, 1997b). In theory, the Doppler spectrum can be used to estimate the drop size 74

RTICLE IN PR

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

distribution (Gossard et al., 1997; Babb et al., 1999). Drizzling stratus clouds produce a 75bimodal Doppler spectrum at 95 GHz, because drizzle falls at about 0.8 m/s (Frisch et al., 76 1995) to 1.0 m/s (Babb and Albrecht, 1995) relative to cloud droplets. Therefore the 77 presence of a drizzle mode to the left of the cloud mode in the Doppler spectrum can be 78used to exclude drizzle cases. However Doppler spectra from an airborne radar are much 79affected by aircraft motion. Therefore they cannot be used to distinguish falling drizzle 80 from steady cloud droplets. 81

A third method uses the reflectivity *profiles* measured by an up-looking ground-based 82 cloud radar to distinguish clouds with drizzle-size drops (Fox and Illingworth, 1997a). 83 Drizzle-free cloud profiles tend to have radar reflectivity increasing with altitude within 84 cloud, due to the adiabatic increase in LWC. For drizzle cases the highest reflectivity is 85 encountered lower in the marine stratus, because drizzle grows as it falls by collision/ 86 coalescence. 87

The primary objective of this paper is to assess the radar reflectivity value above which 88 drizzle is likely to occur in marine stratus. As an extension of the Sauvageot and Omar 89 (1987) study, we aim to demonstrate that the threshold reflectivity for drizzle is sensitive to 90 altitude within the marine stratus. We then use this thresholding method to demonstrate 91that a strong relationship can be found between LWC and reflectivity in marine stratus, but 92only when the drizzle patches are excluded. 93

But first the data sources are described and the analysis methods are discussed.

2. Data sources and analysis

Data from Coastal Stratus 99 (CS99) are used. This project used the Wyoming King 96 Air (WKA) aircraft and the Wyoming Cloud Radar (WCR) to study persistent stratus 97 clouds off the Oregon coast in August 1999. Data from three flights are studied in 98 detail, on 9, 16 and 17 August. Drizzle fell heavily on 17 August, and was present in 99 patches on the two other flights. Visible satellite imagery reveals significant mesoscale 100 variations of cloud albedo on these three days near the flight track, especially on 16 101August (Fig. 1). 102

2.1. In situ probes

The WKA carried five cloud probes (Table 1). A continuous drop size distribution 105(DSD) can be composed with the in-situ measurements of the FSSP, 1DC and 2DC 106 probes. The FSSP provides the distribution of droplets from 1.5 to 46.5 µm. Measure-107ments of 1DC at droplet range from 50 to 100 µm compose the second segment of the 108spectrum. The spectrum of droplets larger than 100 μ m is given by 2DC measurements. 109There is some overlap in the instrument measurement ranges (Table 1), but the probes 110 are most reliable near the center of this range, and the overlapping tails may not agree 111 well. Therefore two transitions occur in the measured drop spectrum, one at 50 µm 112(between FSSP and 1DC measurements) and the other at 100 μ m (between 1DC and 1132DC measurements). The first transition, 50 μ m, is chosen to be the drizzle lower 114threshold diameter in this study. This probe-based discrimination of cloud droplets from 115

3

95

94

103

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

Fig. 1. Visible satellite images with approximate WKA flight locations (denoted as FL) for the three flights used in this study. The light lines represent the coast and the 200-m height contour.

drizzle at a diameter of 50 μ m has a physical basis also, as it distinguishes between 116 condensation and coalescence as dominant droplet growth mechanisms (Frisch et al., 117 1995). 118

Measurements of FSSP give the cloud DSD. Drops measured with the 1DC and 2DC 119are considered to be drizzle. When neither the 1DC nor the 2DC probes detect droplets 120during a given sample period, then the marine stratus traversed during that sample period 121is considered to be drizzle-free. Because 1DC measurements were less reliable than 2DC 122measurements in CS99 (the 1DC probe undersampled droplets), only the 2DC measure-123ments are used to determine drizzle presence. Because the FSSP sampling rate is $10 \times$ 124higher than the 2DC (Table 1), and because the number of drizzle drops is orders of 125magnitude less than the number of cloud drops, the cloud DSD can be described more 126accurately than the drizzle DSD. 127

1.2	Paramete	Parameters of the cloud probes aboard the WKA during CS99					
1.3	Probe	Variable	Measurement range	Resolution	Temporal resolution (Hz)	Volume sampling rate (cm ³ s ^{-1})	
1.4	FSSP	drop size	1.5 to 46.5 µm	3 µm	10	50	
1.5	1DC	drop size	25 to 175 µm	12.5 μm	10	10^{3}	
1.6	2DC	drop size	50 to 800 µm	25 μm	1	5×10^3	
1.7	PVM	LWC	0.002 to 10 g m ^{-3}	15 μg m ⁻³	25	_	
1.8	JW	LWC	0.0 to 3 g m ^{-3}	15 μg m ⁻³	25	-	
1.9	WCR	reflectivity	-30 to $+40$ dBZ	_	30	4×10^9	

t1.1 Table 1t1.2 Parameters of the cloud probes aboard the WKA during CS9

FSSP = forward scattering spectrometer probe; 1DC (2DC) = Particle Measuring Systems $200 \times$ one (two)dimensional optical array; PVM = Gerber particle volume monitor probe; JW = Johnson Williams hot-wire probe. The volume sampling rate is the volume of air sampled per unit time, assuming an aircraft speed of 100 m/s. For comparison, the Wyoming Cloud Radar (WCR) is added to the list. Its minimum detectable signal is -30 dBZ at a range of 1 km, and at least 6 dBZ lower at 90 m. The WCR volume sampling rate applies to a range of 90 m and a pulse width of 250 ns.

t1.10

⁴

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

2.2. Radar reflectivity

The 95-GHz (3 mm) WCR antenna can be directed in up or side directions with a 130reflector plate on the aircraft's fuselage. In order to relate in situ measurements to radar 131reflectivity, only the side-beam reflectivity is used, because in marine stratus vertical 132gradients are much larger than the horizontal ones. The nearest gate containing reliable 133reflectivity information is at 90 m (9 August) or 75 m (16 and 17 August) to the side of the 134aircraft. (The first gate, at 60 m from the aircraft, proved to be often contaminated by 135transmitter noise.) The nearest good gate has a volume of 36 m³ at 90 m [assuming a 250-136ns pulse length and a 0.7° circular beam width]. The nearest gate radar volume, cumulated 137over 1 s (100 m) along the aircraft track, is six orders of magnitude larger than the 2DC 138probe volume, and eight orders of magnitude larger than the FSSP volume (Table 1). This 139implies that WCR reflectivity measurements are much more robust, and can be made at 140 higher frequency, than cloud probe estimates. 141

In short, the comparison of radar to in situ probe data faces two experimental 142 constraints: (a) the radar and probe data are not spatially coincident; and (b) the radar 143 samples much larger volumes of air than do the in situ probes. The first constraint will be 144 assessed by means of a spatial correlation analysis (Section 2.3). The implication of the 145 second one will be examined by comparing measured against computed reflectivity, 146 assuming Rayleigh scattering (Section 3).

2.3. Spatial correlation analysis

An optically relatively uniform horizontal structure is often observed in marine stratus, 150 yet mapped fine-scale radar reflectivity appears surprisingly patchy (Vali et al., 1998). 151 Therefore, before we proceed with the analysis of the relation between in situ drizzle and 152 adjacent radar reflectivity, some 75–90 m to the side of the aircraft, we must first evaluate 153 how representative the laterally displaced WCR data are for in situ measurements, which 154 are used to define drizzle and drizzle-free cases. The WCR reflectivity will hereafter refer 155 to the nearest radar gate only. 150

To evaluate how much uncertainty is introduced by this lateral displacement, we 157 analyze the horizontal structure of marine stratus along the flight track. Through the 158 application of Taylor's hypothesis, the autocorrelation coefficient Cor(L), calculated with a 159 time series of a variable along any level flight leg, can be used to examine the scales of 160 horizontal variability of that variable: 161

$$\operatorname{Cor}(L) = \operatorname{Cor}(-L) = \frac{\sum_{k=0}^{N-L-1} (x_k - \bar{x})(x_{k+L} - \bar{x})}{\sum_{k=0}^{N-1} (x_k - \bar{x})^2}$$
(1)

where *N* is the sample size, *L* is the time lag, and \bar{x} is the mean of the sample population 163 $x=(x_0, x_1, \dots, x_{N-1})$. The time lag can be converted to a spatial separation, since the 164 aircraft speed is much higher than the rate of change within cloudy parcels. To examine the 165

5

128

129

148

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

horizontal coherence of echo structures, only level flight legs are analyzed. The variable166we use is the nearest-gate WCR reflectivity. We can of course use all WCR gates and167examine spatial coherence along the radar range, sideways from the aircraft, but the echo168would have to be corrected for attenuation first, which adds further uncertainty.169

The autocorrelation coefficient of reflectivity decreases with the increasing distance 170(Fig. 2). An autocorrelation value of 0.50 can be considered to define the maximum size of 171coherent features. The bad news is that Fig. 2 suggests that both drizzle patches and echo-172void areas are rather small in marine stratus, about 70 m to a few 100 m in diameter. The 173good news is that nearly all autocorrelation coefficients are larger than 0.50 at the distance 174between the aircraft and the radar nearest gate for each flight. The spatial correlations 175between in-situ measurements and WCR nearest gate echoes therefore are expected to be 176reasonable, but not excellent. The 75-90 m displacement will certainly introduce some 177 uncertainty. 178

To reduce this uncertainty, we will only include those *drizzle events* that last at least 2 s 179 (200 m), as measured by the 2DC probe. Thus we can focus on the larger drizzle patches, 180 where the sideways WCR reflectivity is more likely to sample the same drizzle patch. 181 Similarly, *drizzle-free events* are those series of at least 2 s, with non-zero FSSP data and 182 zero 1DC and 2DC data. Another way to reduce the uncertainty due to non-coincidence is 183 to compare the drizzle threshold reflectivity profile, based on WCR measurements, to that 184 obtained from reflectivity values calculated from the in-situ observed DSD (Section 3). 185

2.4. Statistical methods

Two kinds of statistical methods will be used to assess the existence of a threshold 188 reflectivity discriminating between drizzle cases and drizzle-free cases. A first method is 189based on an analysis of variance. In Table 2, the 2DC yes includes all cases when the 2DC 190probe detects drizzle drops in the cloud. The *reflectivity yes* applies when the reflectivity 191exceeds an assumed threshold reflectivity. This reflectivity can either be that at the WCR 192nearest range gate or the reflectivity calculated from the DSD measured by airborne 193probes. The values in Table 2 are the number of situations satisfying both 2DC yes/no and 194*reflectivity yes/no*, for example n_{00} counts the number of reflectivity measurements larger 195than the assumed threshold in the 2DC yes group. A series of threshold reflectivity values 196between -35 and -10 dBZ then is assumed. The optimal drizzle threshold reflectivity is 197the one corresponding to the maximum *hit rate*. The hit rate is defined as: 198

$$H = \frac{n_{00} + n_{11}}{n} \tag{2}$$

A second method involves the division of reflectivity values into two groups, **209** corresponding to in situ drizzle-free cases and drizzle cases. Since the reflectivity due 202 to cloud droplets is generally less than that due to both cloud droplets and drizzle drops, 203 the two groups of reflectivities are expected to form distinct probability density functions 204 (PDFs). The reflectivity corresponding to the *cross point of the two PDFs* is then chosen to 205 be the drizzle threshold reflectivity. Again this method can be applied both to adjacent 206 WCR-measured reflectivities, and to reflectivities calculated from in situ DSDs. 207

Fig. 2. Autocorrelation coefficients calculated for WCR nearest gate reflectivities for the three flights. The coefficient is shown for several straight flight tracks in each plot. The vertical arrow is the median lag distance at which the autocorrelation coefficient drops below 0.5. The horizontal double-arrow line indicates the distance between in-situ measurements and the radar nearest gate for each flight.

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

Contingency table of drizzle based on 2DC measurements and on reflectivity				
Drizzle presence	2DC yes	2DC no	total	
Reflectivity yes	n ₀₀	<i>n</i> ₀₁	n_{0} •	
Reflectivity no	n_{10}	n_{11}	$n_{1\bullet}$	
Total	<i>n</i> •0	n_{\bullet_1}	n	

t2.1 Table 2

2.5. Drizzle probability

The first question is whether drizzle really is more likely when the radar reflectivity is 210 higher. Drizzle patches were more frequent on the 17 August flight, for instance, but was 211 the reflectivity higher in these patches? Fig. 3 shows the probability of in situ drizzle (P_Z) 212 for given values of sideways reflectivity Z, calculated as: 213

208

209

$$P_Z = \frac{N_{\rm dZ}}{N_Z} \tag{3}$$

where N_Z is number of samples with a nearest-gate radar reflectivity value Z, and N_{dZ} is the number of these samples with in situ drizzle. In situ drizzle probabilities can be seen to sharply increase in the reflectivity range of -20 to -10 dBZ. This implies little uncertainty about the existence and validity of a drizzle reflectivity threshold in marine stratus. This also suggests a possible threshold, based on points of P=0.5, between -16and -12 dBZ for the whole cloud layer. This is consistent with the -15 dBZ drizzle threshold proposed by Sauvageot and Omar (1987).

Fig. 3. The probability of drizzle, as measured by the 2DC probe, as a function of adjacent WCR reflectivity. Data from all flight levels in marine stratus are used.

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

2.6. Cloud height normalization

On each of the three CS99 flights, radar reflectivity has a distinct dependence on height 224 in marine stratus. Therefore, it is assumed that the threshold radar reflectivity for drizzle 225 also varies with altitude in cloud. Yet marine stratus cloud depths vary significantly from 226 day to day, and regionally. Therefore, to facilitate comparisons, a normalized altitude in 227 cloud will be used in this study. Assume that the normalized cloud top is 1.0 and the cloud 228 base is 0.0. Then the normalized altitude in cloud ϕ can be calculated as: 229

$$\Phi = \frac{h - h_{\rm b}}{h_{\rm t} - h_{\rm b}}$$

where *h* is the cloud altitude, h_b is the altitude of the cloud base, and h_t is the altitude of the cloud top. Data will be binned in nine normalized cloud layers between $\phi = 0.05$ and $\phi = 0.95$, each with a depth of 0.1.

When the WCR points sideways, the radar beam may not be exactly horizontal. A small234correction of the altitude of the radar nearest gate is calculated as:235

$$\Delta h = d \times \sin\theta \tag{5}$$

where d is the distance between aircraft and radar nearest gate, and θ is the angle of the 236 radar beam from the horizontal plane. An implication of this correction is that merged in 238 situ probe and lateral WCR reflectivity data may end up in a different normalized cloud 239 layer. This occurs in less than 0.1% of the merged data. 240

This normalization requires a knowledge of cloud top and base. In situ LWC estimates 241 are used to determine the altitudes of cloud top and cloud base. The WKA did several 242 ascents and descents through the cloud layer on all flights. The LWC of marine stratus 243 increases with altitude from the cloud base (Fig. 4), as expected from moist adiabatic 244 processes without precipitation. The LWC estimates based on the integration of FSSP bin 245 measurements generally are smaller than those of the PVM and JW hot-wire probes. The 246 latter two agree well. 247

The altitude from which point LWC begins to increase from near zero values is 248 considered to be cloud base. Since the stratus layer is capped by a much drier, warmer 249 airmass, the cloud top is unambiguously defined as the altitude where the LWC drops 250 off suddenly. Here the LWC can vary from zero (higher than cloud top) to the largest 251 value of the vertical profile (just below the cloud top) within less than 100 m. 252

The LWC profiles (Fig. 4) reveal two types of heterogeneities. A large LWC range at 253a given altitude suggests non-uniformities of cloud horizontal structure. Such variations 254in marine stratus (or rather, stratocumulus) are related to boundary-layer and cloud-scale 255dynamics (Stevens et al., 2003). These variations probably occur at all flight levels, but 256are only sampled at select flight levels in Fig. 4. Especially on 16 and 17 August the 257lower LWC range at a given height is as low as zero. This suggests that the stratus deck 258was broken on these flights. Secondly, the cloud *vertical* structure varies: several cloud 259bases may exist, from which the LWC increases adiabatically, especially on 17 August 260(Fig. 4). Marine stratus cloud top variations occur as well, both on the small and the 261regional scales, the latter on account of the proximity to coastal topography (Nuss et al., 262

9

222 223

(4)

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

00.2	And days of the top and base of marine stratus on three high days				
t3.3		9 August	16 August	17 August	
t3.4	Altitude of cloud top (m)	375	485	800	
t3.5	Altitude of cloud base (m)	60	75	360	
t3.6	Depth of cloud layer (m)	320	380	440	

t3.1 Table 3

t3.2 Altitudes of the top and base of marine stratus on three flight days

t3.7 These are used to determine the normalized altitude in cloud.

2000). No systematic variations of cloud top height, e.g. as a function of distance263offshore, were found on any of the three flights. The choice of a single cloud base and264top for an entire flight (Table 3) is somewhat subjective, but it enables the general-265izations proposed further in this study.266

3. Threshold reflectivity profile

To assess the association between in-situ measurements and WCR radar reflectivity, 268 two drizzle threshold estimation data sources are compared: one is based on the equivalent 269 reflectivity calculated with in-situ measurements; the other uses WCR reflectivity. 270

3.1. Threshold reflectivity for drizzle based on in-situ measurements

The radar reflectivity can be calculated directly based on the observed composite 273DSDs, using the FSSP, 1DC and 2DC probes. The power returned at 95 GHz (3 mm 274wavelength) can be due to two kinds of scatter modes, Rayleigh scatter and Mie scatter. 275When the droplet diameter is no larger than about 1/10 of the radar wavelength, the 276particles will behave as Rayleigh scatterers. Larger particles behave as Mie scatterers. 277Virtually all droplets in marine stratus are smaller than 300 µm in diameter. Therefore, 278only the Rayleigh scatter mode is used to calculate equivalent radar reflectivity factor Z 279 $(mm^6 m^{-3})$ from observed DSDs, as follows: 280

$$Z = \int_0^\infty n(D) D^6 \mathrm{d}D \tag{6}$$

where *D* is the particle diameter (mm), and n(D) is number density of droplets with diameter *D* (mm⁻¹ m⁻³). Since the magnitude of *Z* spans several orders of magnitude, a logarithmic scale is used as $dBZ = 10 \log_{10} Z$. The term radar reflectivity factor is generally abbreviated to reflectivity in this text. While the logarithmic scale is used in the figures and text, all calculations assume the units of mm⁶ m⁻³.

The two statistical methods, the hit rate method and the PDF cross-over method 287 (Section 2.4), are applied to reflectivity values derived from the in situ probes to find 288

11

267

271

Fig. 4. Profiles of LWC for three flights, based on the entire flight record. PVM measurements are used on 9 and 17 August, and JW hot-wire measurements on 16 August. These profiles are used to determine the mean cloud top and cloud base, as shown.

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

a drizzle threshold reflectivity. The two methods yield similar results, with differences 289 of 1dBZ at most. This coincidence confirms the validity of defining a reflectivity 290 threshold for drizzle. This threshold increases monotonically with altitude, from about 291 -32 dBZ near cloud base to about -19 dBZ near cloud top, for all three flights 292 (Fig. 5). The agreement between the three flights is quite good, notwithstanding 293 different synoptic conditions and drizzle frequencies. It is best in the lower half of the 294 stratus deck. 295

The separation between drizzle and drizzle-free events is height-dependent as well. A 296 distinct gap exists between the reflectivity PDF of drizzle-free events and that of drizzly 297events at lower levels, especially for 16 and 17 August flights. Therefore it is straight-298forward to select a drizzle reflectivity threshold in the lower half of the cloud. But at the 299upper part of the marine stratus, the PDFs are less separated and the threshold slopes 300 become smaller (Fig. 6). Data from all three flights (not shown) confirm that the 301reflectivity PDFs for drizzle and drizzle-free cases merge near the cloud top, and that 302 the drizzle threshold reflectivity is most crisply defined, and least variable from day to day, 303 in the lower half of the marine stratus. 304

In all three cases the merging of the reflectivity PDFs for drizzle and drizzle-free cases 305 towards the cloud top is due to an increase of the average reflectivity in drizzle-free stratus, 306 towards the top, more than to a decrease in drizzly stratus. In other words, as the adiabatic 307

Fig. 5. Reflectivity threshold for drizzle in marine stratus, based on in-situ calculated reflectivity, as a function of normalized height in cloud. The threshold is the average between the hit rate and the PDF cross-over methods, which differ by less than 1 dBZ.

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

Fig. 6. Application of the crossover and hit rate methods for reflectivity values calculated from FSSP, 1DC and 2DC data. Shown are reflectivity PDFs for drizzle-free (thin curve) and drizzly (bold curve) events at two altitudes for the 17 August flight. The two PDFs cross at a reflectivity value shown by the solid vertical line. The dashed vertical line is the threshold reflectivity determined by the hit rate method.

LWC and droplet numbers increase towards the stratus top, so does the reflectivity, 308 approaching values typical of drizzly stratus. Drizzle drops are present throughout the 309 cloud depth and sometimes even below cloud base (Fox and Illingworth, 1997a; Stevens et 310 al., 2003), because drizzle drops fall and may grow towards cloud base. Near the $\phi = 0.8$ 311 height, 44% of the computed reflectivity is due to cloud droplets on 17 August flight, 312 which experienced more drizzle, while near the $\phi = 0.3$ height, 95% of it due to drizzle. On 313 9 August, which experienced little drizzle, these numbers are 57% and 87%, respectively. 314

This explanation clarifies why the drizzle threshold reflectivity becomes more difficult to 315 define towards the cloud top. 316

317

318

3.2. Threshold reflectivity based on WCR measurements

As mentioned above, only events with more than two successive seconds of non-zero 319 2DC measurements are included for drizzle cases, when comparing in situ to WCR data. 320 Similarly, if there are at least two successive seconds with both zero 1DC and zero 2DC 321 measurements, but non-zero FSSP measurements, a cloudy region with a diameter larger 322 than 200 m is considered to be drizzle-free. For WCR nearest gate measurements, a 323 reflectivity smaller than -36 dBZ is considered to be noise. All noise values in the 324 merged in situ/WCR time series are excluded as well. 325

The two series of WCR reflectivities, 'with drizzle' and 'drizzle-free', are studied at 326different cloud altitudes to find a threshold WCR reflectivity to discriminate drizzle-free 327 from drizzly marine stratus. The same two statistical methods (Section 2.4) are applied to 328 WCR nearest gate measurements. The drizzle-free and drizzly PDFs of WCR reflectivity 329each have a distinct and well-separated peak, for all three flights. Again, as was observed 330using calculated reflectivity values, a larger separation between the two distribution 331peaks is present at the lower part of the cloud. The drizzle threshold reflectivity based on 332the hit rate is again within 1 dBZ of that based on the cross-over point between the two 333 PDFs. This threshold increases monotonically with cloud altitude on all flights (Fig. 7), 334

Fig. 7. As Fig. 5, but applied to WCR measurements.

as was the case for the calculated reflectivity (Fig. 5). Fig. 7 lends support to the 335 existence of an unambiguous reflectivity threshold for drizzle, especially in the lower 336 half of marine stratus. 337

The two PDFs for the drizzle-free and drizzly series are not as separate at the upper 338 part of cloud. This is particularly true for the Aug. 16th flight (Fig. 8). This implies that 339 drizzle presence is indiscernible from upper-cloud reflectivities on this day, perhaps 340 because the patches were smaller. It is possible also that many drizzle droplets with 341 diameter between 50 and 100 μ m remained unsampled by the 1DC probe on 16 August. 342 Such cases, probably with high WCR reflectivity values, are included in the drizzle-free 343 data series. The undersampling of these droplets, due to the poor performance of the 344

Fig. 8. As Fig. 6, but for WCR reflectivities for the 16 August flight.

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

1DC probe, introduces errors into the drizzle threshold reflectivity estimation. But even 345 on 16 August, the two PDFs are separated clearly at lower levels, except for the $\phi = 0.4$ 346 height, where a threshold value cannot be determined because the drizzle-free PDF has a 347 wider distribution than the drizzle PDF. Although the 1DC data quality was more 348 questionable on 16 August, and the patches were relatively small on some flight legs, a 349 positive trend of drizzle threshold with cloud altitude reveals (Fig. 7), as on the two 350 other flights. 351

In summary, similar threshold profiles are obtained using WCR reflectivity, for all three 352 flights (Fig. 7). The drizzle threshold reflectivity slope with cloud altitude is similar to that 353 based on calculated reflectivity (Fig. 5). The threshold is again most crisp in the lower half 354 of the marine stratus, where the day-to-day variability is smallest. This proves that 355 observed *cloud radar reflectivities alone can reliably flag drizzle presence, and that a 356 clear, height-dependent reflectivity threshold exists for drizzle in marine stratus.* 357

3.3. Relation between calculated reflectivity and WCR reflectivity

One difference emerges when comparing the threshold reflectivity based on in-situ 360 calculated reflectivities (Fig. 5) to that based on WCR measurements (Fig. 7). The 361 two profiles show a similar variation with cloud altitude, but the calculated values are 362 about 6 dBZ lower (Fig. 9). The question is then: which reflectivity values are 363

Fig. 9. Threshold reflectivity profiles based on in-situ calculated reflectivities (left) and the profiles based on WCR measurements (right).

 $358 \\ 359$

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

biased, the WCR values or the calculated values? The WCR was carefully calibrated 364 by means of a corner reflector, and the calibration difference before and after the 365CS99 field phase was within 1 dBZ (Haimov, personal communciation). The spatial 366 offset between radar and in situ probes (Section 2.2) introduces more scatter, but 367there is no reason to expect that it induces a systematic bias. We believe that the 368 reflectivity calculated from in situ probes (Section 3.1) is about 6 dBZ too low, 369 because of the small sampling size (Table 1), especially for the 1DC and 2DC 370probes. The largest droplets in the distribution have a profound impact on the 371reflectivity (Eq. (6)). The average number concentrations of drizzle drops ranged from 3720.2 to 1.8 per liter, on 9 and 17 August, respectively. This means that on 9 August 373the odds that a drizzle drop is recorded by the 2DC probe within one second of 374flight is only about 50% (Table 1). In fact a continuous log-normally distributed 375 droplet spectrum, whose coefficients are based on FSSP and 2DC measurements 376 cumulated over some time, reproduces the average WCR reflectivity within about 2 377dBZ on all three flights (Wang, 2002). Even small droplets may be undercounted: the 378one-second LWC estimated from the integration of FSSP, 1DC and 2DC data is 379systematically lower than that from two independent LWC probes listed in Table 1, 380 by 21% on average. 381

Therefore we propose to increase the calculated reflectivities by some value that is 382related to the difference between the WCR profile and the in-situ profile. To estimate 383the magnitude of this adjustment, we compare profiles of reflectivities computed from 384the in situ probes (Z_i) and corresponding WCR reflectivities (Z_w) . For this purpose all 385WCR nearest-gate data are used, irrespective of drizzle presence. Again the data are 386categorized by normalized height and flight day. In-situ calculated reflectivities are 387 obviously smaller than WCR echoes for 9 August (Fig. 10), and for the two other 388flights. The match between $Z_{\rm w}$ and $Z_{\rm i}$ is reasonable, at least the median values have a 389similar vertical variation. The median deficit of Z_i dwindles slightly from cloud base to 390 cloud top for the three flights (Table 4). However the relationship between the Z_i 391 deficit and cloud height is not linear, and it differs between the three flights. Multiple 392factors, such as spatial variance of cloud droplet spectrum and shortcomings of in-situ 393instruments, can affect the deficit. Therefore, and because the number of samples in 394each cloud layer varies by more than an order of magnitude, we cannot, with any 395 confidence, propose a relationship between the Z_i deficit and cloud height. The mean 396reflectivity deficit for all levels is 6.4 dBZ for 9 August, 7.2 dBZ for 16 August and 397 5.8 dBZ for 17 August. We propose to simply augment the in-situ calculated 398reflectivity profile by a constant value, i.e. 6.5 dBZ, the average deficit relative to 399radar measurements. 400

3.4. Threshold reflectivity applied to WCR measurements

Two independent reflectivity profiles flagging drizzle in marine stratus have been 403 obtained, one based on Z_i and one on Z_w . The two threshold profiles have a similar slope, 404 but a bias is detected in the in-situ reflectivity values, a bias which poorly correlates with 405 cloud height. We increased the threshold profile by the mean difference between Z_w and Z_i . 406 Therefore the *adjusted* calculated threshold profile is centered on the WCR threshold 407

17

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

Fig. 10. Profiles of in-situ calculated reflectivity (dashed) and WCR reflectivity (solid) for the 9 August flight. From left to right, three lines of each kind represent reflectivity values of the 20, 50, and 80 percentiles of the reflectivity distribution at each level.

profile, and the difference between the two profiles is quite small. An example, for 17 408 August flight, is shown in Fig. 11. 409

The WCR is faulted by the non-coincidence of 2DC measurements, which are used to decide drizzle presence. The threshold profile based on in-situ measurements is not 100% 411

t4.1 Table 4

The difference in median values (dBZ) of WCR reflectivity and calculated reflectivity, as a function of normalized t4.2 height in cloud

t4.3	ϕ	9 August	16 August	17 August	Average
t4.4	0.9	2.42	5.58	4.82	4.5
t4.5	0.8	3.99	5.82	5.96	5.3
t4.6	0.7	5.31	5.98	5.15	5.5
t4.7	0.6	4.90	6.99	5.00	5.7
t4.8	0.5	5.80	6.73	4.85	5.9
t4.9	0.4	6.57	7.03	6.76	6.8
t4.10	0.3	6.91	7.88	7.51	7.5
t4.11	0.2	9.07	12.78	8.07	10.5
t4.12	0.1	12.92	6.39	4.43	9.5
t4.13	Mean	6.3	7.2	5.4	

The mean for all levels is weighted by the number of samples in each layer; the average for the three days, at any t4.14 level, is not weighted.

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

Fig. 11. Profiles of threshold reflectivity for drizzle for the 17 August flight. The left dashed line is the threshold profile based on in-situ measurements. The thin solid line is threshold profile based on WCR observations. The right dashed line represents a new profile, which is the in-situ calculated threshold plus 5.8 dBZ, which is the median difference between radar and calculated reflectivities. The thick solid line represents the average of the latter two lines.

exact either, because of sampling limitations. Therefore, we propose, as best-guess threshold 412 profile for drizzle, the average of the three WCR threshold profiles (Fig. 7) and the three 413 'adjusted' calculated profiles. These profiles are shown in Fig. 12. The small variation 414 between the three flights adds confidence to the result. There is one outlier, at a normalized 415 altitude of 0.9 on 16 August (Fig. 12), but it is based on a relatively small sample size. 416

The small variation from day to day, evident in Fig. 12, justifies the definition of a 417 single best-fit curve. A least-squares method is used to regress the threshold curve versus 418 normalized altitude in cloud (Fig. 13). A weight of 0.5 is applied to the anomalous 419 threshold at 0.9 altitude on 16 August, while a weight of 1.0 applies to all other values. A 420 regression curve is thus obtained for the improved threshold reflectivities of all 3 days: 421

$$Z_{\rm t} \ (\rm{mm}^6 \ \rm{m}^{-3}) = 0.046 \phi^{1.413} \tag{7}$$

where Z_t is the reflectivity factor, with the units of $(mm^6 m^{-3})$, and ϕ is the 422 normalized altitude in cloud. This equation is considered to be the key result of this 424 study. It represents the threshold reflectivity discriminating between drizzle cases and 425 drizzle-free cases versus altitude in cloud. It can be applied to side-looking or profiling 426

Fig. 12. Best-guess threshold reflectivity profile for drizzle in marine stratus, for three flights in CS99.

cloud radar measurements at any range, after attenuation correction, to flag the presence 427of drizzle in warm marine stratus. 428

4. An application: using radar reflectivity to determine cloud water content in 429drizzle-free marine stratus 430

431

432

4.1. Previous work

As an example of the use of the threshold reflectivity profile for drizzle, the relationship 433between LWC and WCR reflectivity is studied for drizzle-free marine stratus. The radar-434based description of microphysical characteristics of stratocumulus and stratus cloud has 435been a topic of research for many years. Both empirical and theoretical relationships 436between Z and LWC have been retrieved. As early as 1954, Atlas suggested a theoretical 437relationship between X-band radar reflectivity and LWC, based on DSD measurements in 438 precipitating clouds (Table 5). 439

No clear relationship exists between LWC and radar reflectivity in CS99 (Fig. 14). This 440 conclusion has been reached by other studies of marine stratocumulus (Fig. 2 in Sauvageot 441 and Omar, 1987; Fig. 6 in Fox and Illingworth, 1997a). Any value of LWC is possible 442over a large range of radar reflectivity values. Even below -15 dBZ a large range of LWC 443values is observed. 444

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

Fig. 13. Regression threshold reflectivity profile for drizzle in marine stratus.

Millimeter-wavelength radars for cloud research were developed in the 1980s, and 445 Sauvageot and Omar (1987) proposed a relationship between cloud radar reflectivity factor 446 and LWC based on instrumented aircraft measurements for non- or very weakly 447 precipitating warm coastal cumulus and stratocumulus clouds. Their relationship (Table 448 5) is valid only for radar reflectivity values less than -15 dBZ. The authors assumed that 449 when the radar reflectivity is larger than this value, the cloud includes drizzle-size drops. 450

t5.1 Table 5

t5.2 Regression parameters for the equation $Z (mm^{-6} m^3) = aLWC^b + c$, where LWC has units of g m⁻³

	5 1 1	. ,	1		
t5.3		а	b	С	
t5.4	Source				
t5.5	Atlas (1954)	0.048	2.0	0	
t5.6	Sauvageot and Omar (1987)	0.030	1.31	0	
t5.7	Fox and Illingworth (1997b)	0.031	1.56	0	
t5.8					
t5.9	CS99 flights				
t5.10	9 August	0.040	1.33	0.0001	
t5.11	16 August	0.040	1.49	0.0020	
t5.12	17 August	0.055	1.20	-0.0007	
t5.13	Mean of three flights	0.044	1.34	0.0005	

t5.14 Expressions from the literature are compared against the three CS99 flights.

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

Fig. 14. LWC versus WCR nearest gate reflectivity for all flight legs on 17 August. The LWC is measured with the PVM probe.

Using the results of a one-dimensional adiabatic cloud model, Sassen and Liao (1996) 451 found that the total droplet number concentration (N_d) affects the relationship between the 452 W-band radar reflectivity and LWC in stratus cloud: 453

$$Z \ (\mathrm{mm^6} \ \mathrm{m^{-3}}) = \frac{3.6}{N_{\mathrm{d}}} \mathrm{LWC^{1.8}}$$
(8)

where LWC has units of g m⁻³ and N_d is the total cloud droplet number in cm⁻³. This 454 equation agrees well with Sauvageot and Omar (1987), assuming a typical number 456concentration $N_d = 100 \text{ cm}^{-3}$. Based on in-situ aircraft measurements of warm stratocu-457mulus over the North Atlantic, Fox and Illingworth (1997b) separated drizzle-free and 458drizzle cases by analyzing the Doppler velocity spectrum. Then they developed a 459relationship between 3 mm radar reflectivity and LWC for drizzle-free cases. The slope 460parameter b in their equation (Table 5) falls between that of Atlas (1954) and that of 461Sauvageot and Omar (1987). 462

The above three relationships between LWC and radar reflectivity are only valid for clouds without drizzle-size drops. In these studies, it was either assumed that no precipitation-size particles were present, or their presence was eliminated based on circumstantial radar evidence. In this study, a rigorously tested, height-dependent reflectivity value is used to isolate drizzle presence in marine stratus (Eq. (7)). We now analyze the relationship between the W-band radar reflectivity and LWC in drizzle-free marine stratus. 469

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

23

470 471

4.2. Estimation of the liquid water content of drizzle-free stratus

A clear relation results between LWC and radar reflectivity (Fig. 15) when the drizzle 472 cases are excluded from the sample in Fig. 14, based on the threshold reflectivity method 473(Eq. (7)). Considerable scatter still exists, and some points are located far from the 474regression curve, especially those with low LWC value. This can be explained by the 475distance between aircraft and WCR nearest gate, and by probing uncertainties, especially 476the inadequate performance of the 1DC probe and the slow sampling rate of the 2DC 477 probe (1 s or 100 m). Therefore we introduce two boundary curves to exclude the points 478far away from the dense band (Fig. 15). These curves are exponential equations, 479 $Z = aLWC^{b}$, consistent with the literature (Table 5). Here a and b are chosen arbitrarily 480for each day to include the bulk of the points, but not the outliers. 481

An equation between radar reflectivity factor and LWC is regressed with the leastsquares method: 482

$$Z (\mathrm{mm}^{-6} \mathrm{m}^3) = a \mathrm{LWC}^b + c \tag{9}$$

where Z is the radar reflectivity factor; LWC has units of g m⁻³; and a, b, and c are 485 regression parameters. The values of a, b, and c are determined based on data points 486 delimited by outer bounds, as shown in Fig. 15, for the three flights in CS99 data. The 487

Fig. 15. LWC versus WCR reflectivity for drizzle-free cases for the 17 August flight. Solid curves represent the boundaries, which exclude points far away from dense band in further analyses.

values a and b vary little from flight to flight, notwithstanding varying synoptic 488 conditions and drizzle regimes (Table 5). It is meaningful, therefore, to average the 489 parameters and to propose the following equation to estimate LWC in drizzle-free 490 marine stratus: 491

$$Z (mm^{-6} m^3) = 0.44 LWC^{1.34} + 0.00046$$
(10)

The intercept a (0.044) is distinctly higher than the 0.030 value proposed by Sauvageot 493 and Omar (1987) and by Fox and Illingworth (1997b), but the slope b is comparable. The 495parameter c only affects the shape of regression curve at low LWC values (Fig. 16). Only 496when the LWC is smaller than 0.2 g m^{-3} is there a clear difference between the two curves 497in Fig. 16. In that case the regression curve with c=0 yields a slight underestimation. But 498because the radar reflectivity is near its sensitivity threshold at low LWC values (-30499dBZ at a range of 1 km), because of the relatively small value of c in Eq. (10), and because 500of the variability of c from flight to flight (Table 5), we choose to omit it. And we propose 501the expression 502

$$Z (mm^{-6} m^3) = 0.44 LWC^{1.34}$$
(11)

for the relationship between LWC and radar reflectivity for warm marine stratus.

1.0 Aug 17 0.8 LWC gm⁻³ 0.6 0.4 0.2 Egn 10 Eqn 11 0.0 -35 -30 -25 -20 -15 -10 radar reflectivity (dBZ)

Fig. 16. As Fig. 15, but with the best-fit relationship between LWC and radar reflectivity for the three flights (Eq. (10)), and a simpler version (Eq. (11)).

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

25

5. Discussion

The identification of a threshold reflectivity above which drizzle can be expected 506 assumes independent measurements of radar reflectivity and drizzle presence at the same 10 cation. In this study we define drizzle presence by means of airborne 1DC and 2DC 508 probes. This definition has the advantage to be direct, but has the drawback that the 1DC 509 and 2DC sample sizes are rather small, at least six orders of magnitude smaller than the adjacent radar volume, requiring an along-track sample distance that may exceed the size 511 of a drizzle patch in marine stratus. 510

A second challenge is that radar measurements apply at some distance from the 513aircraft. In other words the radar may be measuring a different region than the aircraft, 514and marine stratus is known to be quite patchy in reflectivity structure (Vali et al., 1998). 515However (a) spatial autocorrelation analysis suggests that the patches generally exceed 51675–90 m; (b) only those drizzle (drizzle free) cases are considered where probes 517measure drizzle (no drizzle) for at least 2 s (200 m along-track); and (c) the relation 518between drizzle presence and reflectivity is almost identical for radar-observed reflec-519tivities and for reflectivities calculated from in-situ measured droplet spectra and further 520adjusted. These three arguments argue in favor of the robustness of the proposed 521threshold reflectivity flagging drizzle presence. We find that this threshold is a function 522of height in cloud. This height is normalized because marine stratus thickness and height 523vary substantially. 524

Two data sources are used to determine the threshold reflectivity profile for 525drizzle, reflectivity measured with WCR, and reflectivity calculated with in-situ DSD 526measurements, assuming Rayleigh scattering. The former of course is preferred since 527it represents a large sampling volume, but its drawback is that it may not represent 528the same air where the drizzle presence is detected (at the aircraft), but rather some 52975-90 m to the side. Because of the assumptions involved, a bulk statistical 530method is required, and two different statistical methods agree very well on the 531definition the threshold reflectivity profile. The two profiles, one based on probe 532data (Z_i) and the other on WCR data (Z_w) , display similar vertical variation. 533However the Z_i values are systematically 6-7 dBZ below the Z_w values on all 534three flights. A matching of probe data to continuous DSD functions suggests that 535the main reason for this discrepancy is that the cloud probes undersample the true 536DSD, mainly in the larger droplet range. This discrepancy is only weakly height-537 dependent, but the height-dependence pattern varies from flight to flight in marine 538stratus. Perhaps the discrepancy can be used to improve probe-based DSD 539estimations. In any event, we adjusted the probe-calculated reflectivity upward by 5406.5 dBZ. 541

This work can be extended. In particular, the reflectivity threshold (Eq. (7)) can be used 542 to examine the relationship between radar reflectivity and other cloud physical parameters, 543 such as liquid water path (LWP), for drizzle-free marine stratus. And one can apply the drizzle threshold value to profile and map drizzle in marine stratus using vertical or 545 horizontal radar reflectivity data. Drizzle maps may bring insights into the dynamics of the 546 marine boundary layer and associated cloud microphysical processes, and they may 547 validate cloud-resolving large-eddy simulations. 548

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

6. Conclusions

Airborne cloud radar and cloud microphysical data, collected on three summer days off 550 the Oregon coast, are analyzed to obtain an empirical threshold radar reflectivity above 551 which drizzle can be expected in warm marine stratus. Our key findings are: 552

- Increasing radar reflectivity always corresponds to increasing drizzle probability.
- The threshold reflectivity Z_t , above which drizzle can be expected in marine stratus, is a strong function of height within the cloud layer, as follows: $Z_t \pmod{m^{-3}} = 555 \ 0.046 \phi^{1.413}$, where ϕ is the normalized height in cloud. Both radar reflectivities and calculated reflectivities (based on measured droplet spectra) indicate that the threshold 557 is most crisply defined in the lower half of the stratus cloud deck. 558
- Liquid water content (LWC) and radar reflectivity generally are unrelated in marine 559 stratus. The use of the threshold reflectivity profile to exclude drizzle is illustrated by 560 examining the relationship between radar reflectivity and LWC in drizzle-free marine 561 stratus. That relationship turns out to be strong, and similar to those found in the literature. 563

Recent observations suggest that drizzle is surprisingly common in marine stratus, 565 especially at night (Stevens et al., 2003). The results of this study can be used in the global assessment of drizzle properties in marine stratus, once spaceborne cloud radar data 567 become available. 568

Acknowledgements

This work was funded by the United States Dept of Defense, Office of Naval570Research, Grant No. 2000-4810. Thanks are due to the WKA/WCR team for collecting571the CS99 data. Gabor Vali was instrumental in initiating, supporting, and reviewing this572research.573

References

- Arking, A., 1991. The radiative effects of clouds and their impact on climate. Bull. Am. Meteorol. Soc. 72, 795–953.
 Atlas, D., 1954. The estimation of cloud parameters by radar. J. Meteorol. 4, 309–317.
 Babb, M.D., Albrecht, B.A., 1995. Comparing 94 GHz radar cloud and precipitation drop spectra with aircraft measurements. Proc. 27th Int. Conf. Radar Meteorology. Amer. Meteor. Soc., Vail, CO, pp. 580–582.
 579
- Babb, M.D., Verlinde, J., Albrecht, B.A., 1999. Retrieval of cloud microphysical parameters from 94-GHz Radar
 580

 Doppler power spectra. J. Atmos. Ocean. Technol. 16, 489–503.
 581
- Baedi, R., Boers, R., Russchenberg, H., 2002. Detection of boundary layer water clouds by spaceborne cloud 582 radar. J. Atmos. Ocean. Technol. 19, 1915–1927.
- Clothiaux, E.E., Miller, M.A., Albrecht, B.A., Ackerman, T.P., Verlinde, J., Babb, D.M., Peters, R.M., Syrett, 584 W.J., 1995. An evaluation of a 94-GHz radar for remote sensing of cloud properties. J. Atmos. Ocean. 585 Technol. 12, 201–229. 586

Fox, N.I., Illingworth, A.J., 1997a. The potential of a spaceborne cloud radar for the detection of stratocumulus 587 clouds. J. Appl. Meteorol. 36, 676–687. 588

26

569

564

549

553

J. Wang, B. Geerts / Atmospheric Research xx (2003) xxx-xxx

- Fox, N.I., Illingworth, A.J., 1997b. The retrieval of stratocumulus cloud properties by ground-based cloud radar. 589 J. Appl. Meteorol. 36, 485–492. 590
- Frisch, A.S., Fairall, C.W., Snider, J.B., 1995. Measurement of stratus cloud and drizzle parameters in ASTEX 591 with K_α-band Doppler radar and a microwave radiometer. J. Atmos. Sci. 52, 2788–2799. 592
- Gossard, E.E., Snider, J.B., Clothiaux, E.E., Martner, B.E., Gibson, J.S., Kropfli, R.A., Frisch, A.S., 1997. The potential of 8-mm radars for remotely sensing cloud droplet size distributions. J. Atmos. Ocean. Technol. 14, 76–87.
- Hudson, J.G., Yum, S.S., 1997. Droplet spectral broadening in marine stratus. J. Atmos. Sci. 54, 2642–2654.
- Löhnert, U., Crewell, S., Simmer, C., 2001. Profiling cloud liquid water by combining active and passive microwave measurements with cloud model statistics. J. Atmos. Ocean. Technol. 18, 1354–1366.
- Miles, N.L., Verlinde, J., Clothiaux, E.E., 2000. Cloud droplet size distributions in low-level stratiform cloud. J. Atmos. Sci. 57, 295–311.
- Nuss, W.A., Bane, J.M., Thompson, W.T., Holt, T., Dorman, C.E., Ralph, F.M., Rotunno, R., Klemp, J.B.,
 Skamarock, W.C., Samelson, R.M., Rogerson, A.M., Reason, C., Chris, Jackson, P., 2000. Coastally trapped
 wind reversals: progress toward understanding. Bull. Am. Meteorol. Soc. 81, 719–744.
- Sassen, K., Liao, L., 1996. Estimation of cloud content by W-band radar. J. Appl. Meteorol. 35, 932-938.
- Sauvageot, H., Omar, J., 1987. Radar reflectivity of cumulus clouds. J. Atmos. Ocean. Technol. 4, 264–272.

Stephens, G.L., Vane, D.G., Boain, R.J., Mace, G.G., Sassen, K., Wang, Z., Illingworth, A.J., O'Connor, E.J.,
 Rossow, W.B., Durden, S.L., Miller, S.D., Austin, R.T., Benedetti, A., Mitrescu, C., 2002. The CLOUDSAT
 mission and the A-train. Bull. Am. Meteorol. Soc. 83, 1771–1790.

- Stevens, B., et al., 2003. Dynamics and Chemistry of Marine Stratocumulus-DYCOMS-II. Bull. Am. Meteorol. 609 Soc. 84, 579–593. 610
- Vali, G., Kelly, R.D., French, J., Haimov, S., Leon, D., Pazmany, A., McIntosh, R.E., 1998. Finescale structure and microphysics of coastal stratus. J. Atmos. Sci. 55, 3540–3564.
- Wang, J.Y., 2002. Identifying drizzle within marine stratus with W-band radar reflectivity profiles. MS thesis, 613
 University of Wyoming. 93 pp. 614

27

596

597

 $\begin{array}{c} 598 \\ 599 \end{array}$

600

604