Airborne Doppler radar observations of convective plumes and radar 'fine-lines'

Bart Geerts, D. Leon, S. Haimov and R. Damiani

University of Wyoming

- 95 Ghz (3 mm) airborne radar observations of the optically clear convective boundary-layer
- Quiescent boundary-layer structure
 - Echo
 - Vertical velocity
- Radar fine-lines and the triggering of thunderstorms
 - Analysis of a dryline and cold front

Wyoming King Research Aircraft

Wyoming Cloud Radar

echoes in the 'quiescent' BL

- Clear, warm day in Kansas, 31 May 2002
- Soundings suggest a well-mixed, well-capped BL
- Thin haze layer marks the BL top

WCR vertical velocities

Frequency-by-altitude diagram

24 May

WCR up-looking, flight level 165 m

5/24, 21:07 UTC

WCR vertical velocities

20:10 Z VPDD

Flight level: ~2300 m AGL

NNW

344

SSE 164

Flight level: 2300 m AGL

WCR nadir antenna reflectivity

20:42:43 - 20:46:18

summary

- An airborne W-band radar sampling at 30 Hz can measure echoes in the opticaly-clear warm-season convective boundary-layer.
- Dual-Doppler synthesis at close range is feasible.
- The quiescent BL contains well-defined plumes,
 - about as wide as they are deep
 - originate near the surface
 - buoyant, positive moisture anomalies
 - tend to be subsident, except for the stronger plumes (bug bias?)
- The WCR echo and velocity transects have been used to describe the detailed vertical structure of radar 'fine lines', confirming kinematic aspects of a cold front that have been simulated in the lab and by hi-res numerical models, but have never been observed before.

Frequency-by-altitude diagram

nadir antenna

0.1

0.2

0.3

5/29/02, 16:42-16:50, sfactor=2