Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft

New cloud chamber studies on the ice nucleation efficiency of airborne bacteria

Ottmar MöhlerInstitute for Meteorology and
Climate Research (IMK-AAF)Dimitrios GeorgakopoulosAgricultural University of AthensCindy MorrisINRA Avignon

Outline

Intro

Methods

Results - Snomax and cultured cells

Summary

Introduction to aerosol-cloud processes

Bergeron-Findeisen mechanism of diffusional ice growth

Formation of secondary ice particles by collision between ice particle and supercooled droplet Hallett and Mossop, Nature, 1974

Both mechanisms of ice groth and ice multiplication are most efficient at T between -5 and -15 °C

 \rightarrow Biological particles are candidates for ice nuclei at these warm temperatures

AIDA cloud chamber

- Laboratory facility to investigate Aerosol
- Interactions and
- Dynamics in the
- Atmosphere

Large aerosol vessel with **volume of 84 m³**.

Thermostated housing with **T-range -90°C to +30°C** and extremely homogeneous **T-control within ±0.3°C**.

Ice number concentration

Cloud Particle Imager CPI

Optical Particle Counter WELAS

Aerosol generation (BIO03_08, PS31R1)

Experiments with dynamic expansion cooling

Expansion experiment:

- Constant wall temperature
- Pumping from 1000 to about 800 hPa
- Super cooling up to -9°C
- Relative ice humidity more than 200%

Exp	Bacteria	n _{ae}	n _{bc}	n _i	n _i /n _{ae}	n _i /n _{bc}	Т
		cm-3	cm ⁻³	cm-3			°C
BIO02_05	Snomax	4000	200	40	1 × 10 ⁻²	0.2	-7 to -9
BIO02_07	P.S. 1	15000	400	1	7 × 10 ⁻⁵	2.5 × 10 ⁻³	-9 to -11
BIO02_10	P.S. 2	15000	600	< 0.1	< 7 × 10 ⁻⁶	< 2 × 10 ⁻⁴	-12 to -15
BIO03_07	Snomax	5000	200	8	2 × 10 ⁻³	0.04	-7 to -9
BIO03_09	P.S. 31R1	3000	200	1	3 × 10 ⁻⁴	5 × 10 ⁻³	-7 to -9
BIO03_12	P.S. Cit7	4000	200	0.2	5 × 10 ⁻⁵	1 × 10 ⁻³	-7 to -9
BIO03_20	SH268Rb-2	2000	250	< 0.2	< 1 × 10 ⁻⁴	< 8 × 10 ⁻⁴	-8 to -11

Ice nucleation of Snomax and 5 different strains of INA bacteria

No significant IN observed at T warmer than -7°C

Most bacteria induce freezing at T < -7° C

Fraction of active cells ranges from about 0.2 (Snomax) to below 1×10^{-3}

Outlook:

More experiments with ice particle residual analysis